Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using fMRI technology to understand hyperlexia

08.01.2004


Georgetown University Medical Center researchers today published the first ever fMRI study of hyperlexia, a rare condition in which children with some degree of autism display extremely precocious reading skills. Appearing in Neuron, the case study uncovers the neural mechanisms that underlie hyperlexia, and suggest that hyperlexia is the true opposite of the reading disability dyslexia.

Hyperlexia is found in very rare cases in children who are on the "autism spectrum," meaning they display some characteristics of autism. Like autistic children, children with hyperlexia have extreme difficulty with oral communication, social interaction and expression, and yet can read surprisingly well at a very young age. By some accounts, hyperlexic children can read at 18 months, sometimes two years before they have ever uttered a single word. They are drawn to print, sometimes reading all the signs and license plates they might encounter during a brief walk through the parking lot.

The child in this case study, Ethan , reads six to eight years in advance of his age. He read dictionaries in his twos, but spoke his first word at age three and a half.



"This advanced reading ability, which would likely surprise any parent, is even more extraordinary given that many of these children begin reading before mastering spoken language, and sometimes before speaking at all," said senior author Guinevere Eden, DPhil, associate professor of pediatrics and director of Georgetown’s Center for the Study of Learning. "Current theories of reading development posit that decoding skills are based on linguistic abilities, but our finding suggests that children like Ethan are able to map sound onto print without a solid language basis."

Eden and her colleagues use fMRI technology to study how brains develop and function as children learn to read. Most children acquire reading skills through explicit instruction received over several years of schooling. In this study, the research team wanted to illucidate the neural signature for precocious reading, which arose in the absence of any teaching. Deviations from the normal pattern would suggest that other regions of the brain might have the potential to become involved in the reading process and would shed light onto possible compensatory strategies of the abnormally reading brain.

The hyperlexic boy, Ethan performed several reading tests while lying down in the fMRI. The researchers then compared hot spots of brain activity in Ethan as he performed these tasks against brain scans of typically developing readers, who were matched to Ethan on either chronological or reading age. Compared to these groups, Ethan demonstrated greater activity in an area on the left side of the brain that is associated with understanding the sounds of speech as well as a region on the right side of the brain that is part of the visual system.

Co-author Peter Turkeltaub, a PhD student, draws an analogy of to the volume control on a radio. "A region of the brain implicated in reading skills, the left superior temporal cortex, is like a dial. When the dial is turned up, you find accelerated readers, or hyperlexics. When the dial is turned down, as has been shown for dyslexic children, you find inefficient readers. The more neurological research we do, the better we may understand how the dial works and what educational interventions may turn the dial toward its optimum point."

Ethan’s parents knew something was peculiar with their son at a young age. He did not speak, make eye contact, or respond to typical verbal or non-verbal communications cues. However, he could sit silently in a corner and read books for hours.

Now at age eleven, Ethan attends a public school with an aide, and was recently voted class president. He has an insatiable curiosity for books, magazines, and television, but still has difficulty in social situations. According to his mom Ilene, "the other kids think he is very smart but very unusual. There are times when he says things that make the other kids realize he is not quite the same."

Ilene said, "If I could tell people one thing about hyperlexia, I would remind them that these children have a tremendous gift and that reading is the way to unlock their minds and hearts. Don’t try to take their books away to force them to interact with people. Encourage their reading ability, because they have so much to offer the world, just in a more unconventional way."

"Neuroscience is allowing us to better characterize people who were before all bundled under the general autism umbrella," said Eden. "Just as it is extremely helpful to distinguish a child with Asperberger’s, identification of hyperlexia can be equally as important for early intervention and appropriately tailored education."


This study was funded by the National Institutes of Health’s National Institute of Child Health and Human Development (NICHD) and National Association for Autism Research (NAAR).

Georgetown University Medical Center is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through our partnership with MedStar Health). Our mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis--or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing and Health Studies, both nationally ranked, and the world renowned Lombardi Cancer Center.

The Georgetown Center for the Study of Learning, which is funded by the National Institutes of Health, seeks to better understand the neural mechanisms that enable the acquisition of reading skills, and to identify new approaches to assess and treat reading disabilities.

Lindsey Spindle | EurekAlert!
Further information:
http://www.georgetown.edu/gumc

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>