Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene targeting prevents memory loss in Alzheimer’s disease model

08.01.2004


Northwestern University researchers have prevented learning and memory deficits in a model of Alzheimer’s disease using a gene-targeting approach to block production of beta-amyloid, or "senile," plaques, one of the hallmarks of the disease.



Alzheimer’s disease is a neurodegenerative condition affecting over 15 million people worldwide that causes memory loss and, ultimately, dementia. Some research suggests that Alzheimer’s disease is caused by an increased amyloid burden in the brain -- the so-called amyloid cascade hypothesis.

Results of the Northwestern study, published in the January issue of the journal Neuron, provide compelling evidence for the therapeutic potential of inhibiting an enzyme, beta-secretase (BACE1), required for the production of beta-amyloid, to treat memory impairment in patients with Alzheimer’s disease.


The study also presents new evidence that beta-amyloid is directly responsible for causing the memory-robbing effects of Alzheimer’s disease, said Masuo Ohno, research assistant professor of physiology, Feinberg School of Medicine at Northwestern University. Ohno’s co-researchers on the project were John F. Disterhoft, professor of physiology, and Robert Vassar, associate professor of cell and molecular biology at the Feinberg School.

Ohno and colleagues used behavioral, biochemical and electrophysiologic methods to analyze BACE1 in mice bred to lack the enzyme but to also overproduce amyloid precursor protein, which BACE1 "clips" into fragments of beta-amyloid that eventually form the notorious plaques associated with Alzheimer’s disease.

The mice were healthy and had no serious neurological abnormalities, suggesting that BACE1 inhibition is a rational strategy for treating Alzheimer’s disease, Ohno said.

Importantly, the beneficial effects of BACE1 inhibition in the mice were seen well before beta-amyloid plaques formed, indicating that the soluble forms of the protein can disrupt learning and memory in early stages of the disease process.

"Potential compounds that block BACE1 should be useful in counteracting the Alzheimer’s disease process. We clearly show for the first time that genetic reduction of brain beta-amyloid levels prevents memory deficits and brain cell functional abnormalities in a laboratory model of Alzheimer’s disease," Ohno said.

"This well-executed study in mice is another step forward toward demonstrating the validity of anti-amyloid interventions in Alzheimer’s disease. The next step is to see if this works in more sophisticated models of the disease, and eventually in humans. " said William Thies, vice president of medical and scientific affairs for the Alzheimer’s Association, which funded part of the study. The National Institutes of Health also funded the study.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>