Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene targeting prevents memory loss in Alzheimer’s disease model

08.01.2004


Northwestern University researchers have prevented learning and memory deficits in a model of Alzheimer’s disease using a gene-targeting approach to block production of beta-amyloid, or "senile," plaques, one of the hallmarks of the disease.



Alzheimer’s disease is a neurodegenerative condition affecting over 15 million people worldwide that causes memory loss and, ultimately, dementia. Some research suggests that Alzheimer’s disease is caused by an increased amyloid burden in the brain -- the so-called amyloid cascade hypothesis.

Results of the Northwestern study, published in the January issue of the journal Neuron, provide compelling evidence for the therapeutic potential of inhibiting an enzyme, beta-secretase (BACE1), required for the production of beta-amyloid, to treat memory impairment in patients with Alzheimer’s disease.


The study also presents new evidence that beta-amyloid is directly responsible for causing the memory-robbing effects of Alzheimer’s disease, said Masuo Ohno, research assistant professor of physiology, Feinberg School of Medicine at Northwestern University. Ohno’s co-researchers on the project were John F. Disterhoft, professor of physiology, and Robert Vassar, associate professor of cell and molecular biology at the Feinberg School.

Ohno and colleagues used behavioral, biochemical and electrophysiologic methods to analyze BACE1 in mice bred to lack the enzyme but to also overproduce amyloid precursor protein, which BACE1 "clips" into fragments of beta-amyloid that eventually form the notorious plaques associated with Alzheimer’s disease.

The mice were healthy and had no serious neurological abnormalities, suggesting that BACE1 inhibition is a rational strategy for treating Alzheimer’s disease, Ohno said.

Importantly, the beneficial effects of BACE1 inhibition in the mice were seen well before beta-amyloid plaques formed, indicating that the soluble forms of the protein can disrupt learning and memory in early stages of the disease process.

"Potential compounds that block BACE1 should be useful in counteracting the Alzheimer’s disease process. We clearly show for the first time that genetic reduction of brain beta-amyloid levels prevents memory deficits and brain cell functional abnormalities in a laboratory model of Alzheimer’s disease," Ohno said.

"This well-executed study in mice is another step forward toward demonstrating the validity of anti-amyloid interventions in Alzheimer’s disease. The next step is to see if this works in more sophisticated models of the disease, and eventually in humans. " said William Thies, vice president of medical and scientific affairs for the Alzheimer’s Association, which funded part of the study. The National Institutes of Health also funded the study.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>