Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene targeting prevents memory loss in Alzheimer’s disease model

08.01.2004


Northwestern University researchers have prevented learning and memory deficits in a model of Alzheimer’s disease using a gene-targeting approach to block production of beta-amyloid, or "senile," plaques, one of the hallmarks of the disease.



Alzheimer’s disease is a neurodegenerative condition affecting over 15 million people worldwide that causes memory loss and, ultimately, dementia. Some research suggests that Alzheimer’s disease is caused by an increased amyloid burden in the brain -- the so-called amyloid cascade hypothesis.

Results of the Northwestern study, published in the January issue of the journal Neuron, provide compelling evidence for the therapeutic potential of inhibiting an enzyme, beta-secretase (BACE1), required for the production of beta-amyloid, to treat memory impairment in patients with Alzheimer’s disease.


The study also presents new evidence that beta-amyloid is directly responsible for causing the memory-robbing effects of Alzheimer’s disease, said Masuo Ohno, research assistant professor of physiology, Feinberg School of Medicine at Northwestern University. Ohno’s co-researchers on the project were John F. Disterhoft, professor of physiology, and Robert Vassar, associate professor of cell and molecular biology at the Feinberg School.

Ohno and colleagues used behavioral, biochemical and electrophysiologic methods to analyze BACE1 in mice bred to lack the enzyme but to also overproduce amyloid precursor protein, which BACE1 "clips" into fragments of beta-amyloid that eventually form the notorious plaques associated with Alzheimer’s disease.

The mice were healthy and had no serious neurological abnormalities, suggesting that BACE1 inhibition is a rational strategy for treating Alzheimer’s disease, Ohno said.

Importantly, the beneficial effects of BACE1 inhibition in the mice were seen well before beta-amyloid plaques formed, indicating that the soluble forms of the protein can disrupt learning and memory in early stages of the disease process.

"Potential compounds that block BACE1 should be useful in counteracting the Alzheimer’s disease process. We clearly show for the first time that genetic reduction of brain beta-amyloid levels prevents memory deficits and brain cell functional abnormalities in a laboratory model of Alzheimer’s disease," Ohno said.

"This well-executed study in mice is another step forward toward demonstrating the validity of anti-amyloid interventions in Alzheimer’s disease. The next step is to see if this works in more sophisticated models of the disease, and eventually in humans. " said William Thies, vice president of medical and scientific affairs for the Alzheimer’s Association, which funded part of the study. The National Institutes of Health also funded the study.

Elizabeth Crown | EurekAlert!
Further information:
http://www.nwu.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>