Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter weather turns on flowering gene

08.01.2004


In four months, when flower buds spring up from the ground, you may wonder how plants know it’s time to bloom. This question has baffled plant biologists for years. Now, scientists at the University of Wisconsin-Madison have an answer: a gene that functions as an alarm clock to rouse certain plants from a vegetative state in the winter to a flowering state in the spring.

According to the researchers, the findings, published in the Jan. 8 issue of the journal Nature, could lead to new methods for manipulating the productivity of crop plants, as well as a better understanding of how organisms control the fate of their cells.

Most people may not know that some of our favorite salad ingredients - carrots, cabbage, radishes, beets and parsley - take two seasons to flower and produce seeds because we harvest them before they have the chance to flower. These plants, called biennials, require a season of cold to flower.



"We’ve known that winter does something to the plant’s growing tip, or meristem, and makes it competent to flower," says Richard Amasino, a UW-Madison biochemistry professor and senior author of the paper. "If biennials don’t go through winter, they won’t flower." But why, he adds, has remained a mystery.

This mystery started to unravel in 1999, when Amasino and his colleagues identified two genes central to the flowering of Arabidopsis thaliana, a small, flowering plant that’s a member of the mustard family. The genes work together to block blossoming. As they observed, one of these genes is no longer expressed in the spring, when the plants can flower and complete their life cycle.

How winter switches off this flower-inhibiting gene in the second growing season, says Amasino, was the next obvious question. So, the Wisconsin scientist and UW-Madison biochemistry graduate student Sibung Sung looked to a biennial variety of Arabadopsis, a plant that’s widely used as a model organism in plant biology and genetics. They screened for mutants that wouldn’t bud after surviving temperatures just above freezing, and they found three - all lacking a gene now called VIN3.

After further investigation, the researchers learned that an extended period of cooler temperatures prompts the VIN3 gene to turn on. Once activated, the gene starts the process of vernalization, whereby the plant becomes competent to flower after exposure to cold. As this process begins, the expression of the flower-suppressing gene identified in 1999 wanes until it is completely blocked.

The researchers report that the VIN3 gene is expressed only after plants have been exposed to conditions effective for vernalization, suggesting that the VIN3 gene functions as an alarm clock rousing biennial plants to bloom.

But how do plants know they’ve been exposed to the right temperature for the right amount of time? "This is an intriguing question," says Sung. "Without a nervous system, plants must have a mechanism by which they can remember they have been through the winter season." Although plants don’t have a brain like humans do, they do have cellular machinery that appears to remember cold exposure, according to the new research.

The Wisconsin scientists show that the expression of VIN3, which occurs after exposure to cold, initiates a series of changes in one of the flower-suppressing genes. Specifically, VIN3 activation permanently modifies the structure of histones, a group of proteins over which DNA is wrapped. These changes block the flower-suppressing gene, switching the plant from a fixed state where it won’t flower to a fixed state where it can flower.

Scientists speculate that changes in histone structure play a major role in the development of higher organisms and the formation of cancer cells. Says Sung, "Histone changes in model plants could give us the opportunity to extend our understanding of how organisms control their cell fates during development."

The findings by Amasino and Sung also could lead to improvements in agriculture.

"This new molecular understanding could provide information to help design tools to manipulate flowering," the biochemistry professor says. For example, agronomists could engineer biennial crops that lack VIN3 and never flower, potentially increasing yield. But as Amasino clarifies, he’s in the business of basic science - it’s up to others to use the information.

Further Contact: Sibum Sung, 608-262-4640, sbsung@biochem.wisc.edu

Richard Amasino | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>