Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter weather turns on flowering gene

08.01.2004


In four months, when flower buds spring up from the ground, you may wonder how plants know it’s time to bloom. This question has baffled plant biologists for years. Now, scientists at the University of Wisconsin-Madison have an answer: a gene that functions as an alarm clock to rouse certain plants from a vegetative state in the winter to a flowering state in the spring.

According to the researchers, the findings, published in the Jan. 8 issue of the journal Nature, could lead to new methods for manipulating the productivity of crop plants, as well as a better understanding of how organisms control the fate of their cells.

Most people may not know that some of our favorite salad ingredients - carrots, cabbage, radishes, beets and parsley - take two seasons to flower and produce seeds because we harvest them before they have the chance to flower. These plants, called biennials, require a season of cold to flower.



"We’ve known that winter does something to the plant’s growing tip, or meristem, and makes it competent to flower," says Richard Amasino, a UW-Madison biochemistry professor and senior author of the paper. "If biennials don’t go through winter, they won’t flower." But why, he adds, has remained a mystery.

This mystery started to unravel in 1999, when Amasino and his colleagues identified two genes central to the flowering of Arabidopsis thaliana, a small, flowering plant that’s a member of the mustard family. The genes work together to block blossoming. As they observed, one of these genes is no longer expressed in the spring, when the plants can flower and complete their life cycle.

How winter switches off this flower-inhibiting gene in the second growing season, says Amasino, was the next obvious question. So, the Wisconsin scientist and UW-Madison biochemistry graduate student Sibung Sung looked to a biennial variety of Arabadopsis, a plant that’s widely used as a model organism in plant biology and genetics. They screened for mutants that wouldn’t bud after surviving temperatures just above freezing, and they found three - all lacking a gene now called VIN3.

After further investigation, the researchers learned that an extended period of cooler temperatures prompts the VIN3 gene to turn on. Once activated, the gene starts the process of vernalization, whereby the plant becomes competent to flower after exposure to cold. As this process begins, the expression of the flower-suppressing gene identified in 1999 wanes until it is completely blocked.

The researchers report that the VIN3 gene is expressed only after plants have been exposed to conditions effective for vernalization, suggesting that the VIN3 gene functions as an alarm clock rousing biennial plants to bloom.

But how do plants know they’ve been exposed to the right temperature for the right amount of time? "This is an intriguing question," says Sung. "Without a nervous system, plants must have a mechanism by which they can remember they have been through the winter season." Although plants don’t have a brain like humans do, they do have cellular machinery that appears to remember cold exposure, according to the new research.

The Wisconsin scientists show that the expression of VIN3, which occurs after exposure to cold, initiates a series of changes in one of the flower-suppressing genes. Specifically, VIN3 activation permanently modifies the structure of histones, a group of proteins over which DNA is wrapped. These changes block the flower-suppressing gene, switching the plant from a fixed state where it won’t flower to a fixed state where it can flower.

Scientists speculate that changes in histone structure play a major role in the development of higher organisms and the formation of cancer cells. Says Sung, "Histone changes in model plants could give us the opportunity to extend our understanding of how organisms control their cell fates during development."

The findings by Amasino and Sung also could lead to improvements in agriculture.

"This new molecular understanding could provide information to help design tools to manipulate flowering," the biochemistry professor says. For example, agronomists could engineer biennial crops that lack VIN3 and never flower, potentially increasing yield. But as Amasino clarifies, he’s in the business of basic science - it’s up to others to use the information.

Further Contact: Sibum Sung, 608-262-4640, sbsung@biochem.wisc.edu

Richard Amasino | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>