Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key risk factor for cataracts

08.01.2004


Ophthalmology researchers at Washington University School of Medicine in St. Louis have identified a key risk factor for the development of cataracts. For the first time, they have demonstrated an association between loss of gel in the eye’s vitreous body -- the gel that lies between the back of the lens and the retina -- and the formation of nuclear cataracts, the most common type of age-related cataracts.



The researchers reported their findings in the January issue of Investigative Ophthalmology and Visual Science.

"Most people think of cataracts as a problem that we develop if we’re lucky to live long enough, but clearly there are people who live to quite an old age and never get cataracts," says principal investigator David C. Beebe, Ph.D., the Janet and Bernard Becker Professor of Ophthalmology and Visual Sciences and professor of cell biology and physiology. "The perception that they are inevitable may have skewed our perspective about preventing cataracts, but it may be possible to prevent them if we can continue to home in on the causes of cataracts."


A cataract is a clouding of the eye’s lens. Cataracts are the most common cause of blindness in the world, accounting for nearly 50 percent of all blindness. In the United States where cataract treatment is routine, surgical removal of cataracts and implantation of replacement lenses is the most expensive item in the Medicare ophthalmology budget, representing more than half of the money spent on ophthalmic services in the country.

The idea that breakdown of the vitreous gel might be related to risk for cataracts first was suggested in 1962 by a New Jersey ophthalmologist who noticed that many of his patients with nuclear cataracts also had degeneration of the vitreous body. But this suggestions was not pursued, and it was more than 40 years before the current work from Beebe and his team demonstrated a statistical relationship between breakdown of the vitreous body and the risk for cataracts.

Beebe’s research team previously demonstrated that genes expressed in the eye’s lens tend to be those found in cells exposed to very low levels of oxygen. Several experiments convinced them the lens is normally a hypoxic -- or oxygen-deprived -- environment. Studies in Sweden also show that patients treated for long periods of time with high levels of oxygen tend to develop nuclear cataracts.

"Those findings helped us form the hypothesis that oxygen might somehow be toxic to the lens," Beebe says. "And there was another key observation: the high incidence of cataracts in patients who have retinal surgery. It’s typical for retinal surgeons to remove the vitreous body in order to get better access to the retina. Within two years of retinal surgery and vitrectomy, patients develop cataracts at a rate approaching 100 percent."

Putting all of that together, Beebe and his colleagues wondered whether there might be an association between breakdown of the vitreous body -- a process known as vitreous liquefaction -- delivery of oxygen from the retina and the formation of nuclear cataracts. Could it be the vitreous body’s job might be to keep oxygen in the retina from migrating forward and damaging the lens, which seems to thrive in an environment with very low oxygen?

To find out, members of Beebe’s laboratory studied 171 human eyes from eye banks, looking for cataracts and measuring the amount of liquid compared to gel in the vitreous body.

"We found that nuclear cataracts were strongly correlated with high levels of vitreous liquefaction, independent of age," Beebe says. "In other words, if we subtracted out the effect of age on cataract formation, we still saw a very strong effect of vitreous liquefaction."

Beebe’s hypothesis is that when the vitreous gel separates from the retina or begins to break down and liquefy, it allows fluid to flow over the surface of the oxygen-rich retina so that oxygen can be carried away in the fluid and delivered to the lens.

Currently, there is no way to measure the breakdown of vitreous gel in living people to assess risk of developing cataracts, but Beebe’s laboratory is collaborating with a group at the University of Virginia that is working on advanced ultrasound techniques in an attempt to do just that.

He’s also collaborating with Nancy M. Holekamp, M.D., associate professor of clinical ophthalmology at Washington University, to measure oxygen levels in the vitreous chamber of patients prior to a vitrectomy and in patients who have had a vitrectomy but require a second retinal surgery a year or two later. Measuring vitreal oxygen levels in those two groups should allow the researchers to compare patients who have a gel vitreous to patients whose vitreous body is completely liquid to see whether oxygen levels near the lens really increase in eyes where the vitreous gel has been removed.

If those studies show it’s possible to identify people at risk for cataracts, Beebe says the next step would be to find ways to prevent the migration of oxygen from the retina to the lens.

"Perhaps we could replace the vitreous gel with a gel polymer that would keep oxygen away from the lens by replacing the barrier between the retina and the lens," Beebe says. "Those are things we haven’t thought about much because, frankly, we didn’t know what the vitreous did. Now that we’re beginning to get an idea of how the vitreous works, it may be possible to design interventions to protect the lens both in people who have had a vitrectomy and in those whose vitreous is degenerating as a part of normal aging."

Jim Dryden | EurekAlert!
Further information:
http://medinfo.wustl.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>