Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key risk factor for cataracts

08.01.2004


Ophthalmology researchers at Washington University School of Medicine in St. Louis have identified a key risk factor for the development of cataracts. For the first time, they have demonstrated an association between loss of gel in the eye’s vitreous body -- the gel that lies between the back of the lens and the retina -- and the formation of nuclear cataracts, the most common type of age-related cataracts.



The researchers reported their findings in the January issue of Investigative Ophthalmology and Visual Science.

"Most people think of cataracts as a problem that we develop if we’re lucky to live long enough, but clearly there are people who live to quite an old age and never get cataracts," says principal investigator David C. Beebe, Ph.D., the Janet and Bernard Becker Professor of Ophthalmology and Visual Sciences and professor of cell biology and physiology. "The perception that they are inevitable may have skewed our perspective about preventing cataracts, but it may be possible to prevent them if we can continue to home in on the causes of cataracts."


A cataract is a clouding of the eye’s lens. Cataracts are the most common cause of blindness in the world, accounting for nearly 50 percent of all blindness. In the United States where cataract treatment is routine, surgical removal of cataracts and implantation of replacement lenses is the most expensive item in the Medicare ophthalmology budget, representing more than half of the money spent on ophthalmic services in the country.

The idea that breakdown of the vitreous gel might be related to risk for cataracts first was suggested in 1962 by a New Jersey ophthalmologist who noticed that many of his patients with nuclear cataracts also had degeneration of the vitreous body. But this suggestions was not pursued, and it was more than 40 years before the current work from Beebe and his team demonstrated a statistical relationship between breakdown of the vitreous body and the risk for cataracts.

Beebe’s research team previously demonstrated that genes expressed in the eye’s lens tend to be those found in cells exposed to very low levels of oxygen. Several experiments convinced them the lens is normally a hypoxic -- or oxygen-deprived -- environment. Studies in Sweden also show that patients treated for long periods of time with high levels of oxygen tend to develop nuclear cataracts.

"Those findings helped us form the hypothesis that oxygen might somehow be toxic to the lens," Beebe says. "And there was another key observation: the high incidence of cataracts in patients who have retinal surgery. It’s typical for retinal surgeons to remove the vitreous body in order to get better access to the retina. Within two years of retinal surgery and vitrectomy, patients develop cataracts at a rate approaching 100 percent."

Putting all of that together, Beebe and his colleagues wondered whether there might be an association between breakdown of the vitreous body -- a process known as vitreous liquefaction -- delivery of oxygen from the retina and the formation of nuclear cataracts. Could it be the vitreous body’s job might be to keep oxygen in the retina from migrating forward and damaging the lens, which seems to thrive in an environment with very low oxygen?

To find out, members of Beebe’s laboratory studied 171 human eyes from eye banks, looking for cataracts and measuring the amount of liquid compared to gel in the vitreous body.

"We found that nuclear cataracts were strongly correlated with high levels of vitreous liquefaction, independent of age," Beebe says. "In other words, if we subtracted out the effect of age on cataract formation, we still saw a very strong effect of vitreous liquefaction."

Beebe’s hypothesis is that when the vitreous gel separates from the retina or begins to break down and liquefy, it allows fluid to flow over the surface of the oxygen-rich retina so that oxygen can be carried away in the fluid and delivered to the lens.

Currently, there is no way to measure the breakdown of vitreous gel in living people to assess risk of developing cataracts, but Beebe’s laboratory is collaborating with a group at the University of Virginia that is working on advanced ultrasound techniques in an attempt to do just that.

He’s also collaborating with Nancy M. Holekamp, M.D., associate professor of clinical ophthalmology at Washington University, to measure oxygen levels in the vitreous chamber of patients prior to a vitrectomy and in patients who have had a vitrectomy but require a second retinal surgery a year or two later. Measuring vitreal oxygen levels in those two groups should allow the researchers to compare patients who have a gel vitreous to patients whose vitreous body is completely liquid to see whether oxygen levels near the lens really increase in eyes where the vitreous gel has been removed.

If those studies show it’s possible to identify people at risk for cataracts, Beebe says the next step would be to find ways to prevent the migration of oxygen from the retina to the lens.

"Perhaps we could replace the vitreous gel with a gel polymer that would keep oxygen away from the lens by replacing the barrier between the retina and the lens," Beebe says. "Those are things we haven’t thought about much because, frankly, we didn’t know what the vitreous did. Now that we’re beginning to get an idea of how the vitreous works, it may be possible to design interventions to protect the lens both in people who have had a vitrectomy and in those whose vitreous is degenerating as a part of normal aging."

Jim Dryden | EurekAlert!
Further information:
http://medinfo.wustl.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>