Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key risk factor for cataracts

08.01.2004


Ophthalmology researchers at Washington University School of Medicine in St. Louis have identified a key risk factor for the development of cataracts. For the first time, they have demonstrated an association between loss of gel in the eye’s vitreous body -- the gel that lies between the back of the lens and the retina -- and the formation of nuclear cataracts, the most common type of age-related cataracts.



The researchers reported their findings in the January issue of Investigative Ophthalmology and Visual Science.

"Most people think of cataracts as a problem that we develop if we’re lucky to live long enough, but clearly there are people who live to quite an old age and never get cataracts," says principal investigator David C. Beebe, Ph.D., the Janet and Bernard Becker Professor of Ophthalmology and Visual Sciences and professor of cell biology and physiology. "The perception that they are inevitable may have skewed our perspective about preventing cataracts, but it may be possible to prevent them if we can continue to home in on the causes of cataracts."


A cataract is a clouding of the eye’s lens. Cataracts are the most common cause of blindness in the world, accounting for nearly 50 percent of all blindness. In the United States where cataract treatment is routine, surgical removal of cataracts and implantation of replacement lenses is the most expensive item in the Medicare ophthalmology budget, representing more than half of the money spent on ophthalmic services in the country.

The idea that breakdown of the vitreous gel might be related to risk for cataracts first was suggested in 1962 by a New Jersey ophthalmologist who noticed that many of his patients with nuclear cataracts also had degeneration of the vitreous body. But this suggestions was not pursued, and it was more than 40 years before the current work from Beebe and his team demonstrated a statistical relationship between breakdown of the vitreous body and the risk for cataracts.

Beebe’s research team previously demonstrated that genes expressed in the eye’s lens tend to be those found in cells exposed to very low levels of oxygen. Several experiments convinced them the lens is normally a hypoxic -- or oxygen-deprived -- environment. Studies in Sweden also show that patients treated for long periods of time with high levels of oxygen tend to develop nuclear cataracts.

"Those findings helped us form the hypothesis that oxygen might somehow be toxic to the lens," Beebe says. "And there was another key observation: the high incidence of cataracts in patients who have retinal surgery. It’s typical for retinal surgeons to remove the vitreous body in order to get better access to the retina. Within two years of retinal surgery and vitrectomy, patients develop cataracts at a rate approaching 100 percent."

Putting all of that together, Beebe and his colleagues wondered whether there might be an association between breakdown of the vitreous body -- a process known as vitreous liquefaction -- delivery of oxygen from the retina and the formation of nuclear cataracts. Could it be the vitreous body’s job might be to keep oxygen in the retina from migrating forward and damaging the lens, which seems to thrive in an environment with very low oxygen?

To find out, members of Beebe’s laboratory studied 171 human eyes from eye banks, looking for cataracts and measuring the amount of liquid compared to gel in the vitreous body.

"We found that nuclear cataracts were strongly correlated with high levels of vitreous liquefaction, independent of age," Beebe says. "In other words, if we subtracted out the effect of age on cataract formation, we still saw a very strong effect of vitreous liquefaction."

Beebe’s hypothesis is that when the vitreous gel separates from the retina or begins to break down and liquefy, it allows fluid to flow over the surface of the oxygen-rich retina so that oxygen can be carried away in the fluid and delivered to the lens.

Currently, there is no way to measure the breakdown of vitreous gel in living people to assess risk of developing cataracts, but Beebe’s laboratory is collaborating with a group at the University of Virginia that is working on advanced ultrasound techniques in an attempt to do just that.

He’s also collaborating with Nancy M. Holekamp, M.D., associate professor of clinical ophthalmology at Washington University, to measure oxygen levels in the vitreous chamber of patients prior to a vitrectomy and in patients who have had a vitrectomy but require a second retinal surgery a year or two later. Measuring vitreal oxygen levels in those two groups should allow the researchers to compare patients who have a gel vitreous to patients whose vitreous body is completely liquid to see whether oxygen levels near the lens really increase in eyes where the vitreous gel has been removed.

If those studies show it’s possible to identify people at risk for cataracts, Beebe says the next step would be to find ways to prevent the migration of oxygen from the retina to the lens.

"Perhaps we could replace the vitreous gel with a gel polymer that would keep oxygen away from the lens by replacing the barrier between the retina and the lens," Beebe says. "Those are things we haven’t thought about much because, frankly, we didn’t know what the vitreous did. Now that we’re beginning to get an idea of how the vitreous works, it may be possible to design interventions to protect the lens both in people who have had a vitrectomy and in those whose vitreous is degenerating as a part of normal aging."

Jim Dryden | EurekAlert!
Further information:
http://medinfo.wustl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>