Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeder-free system for maintaining pluripotency in embryonic stem cells pioneered

08.01.2004


A newly discovered molecule, nicknamed "BIO", safely maintains human embryonic stem cells in a pluripotent state. Its chemical structure is pictured above. The molecule was originally identified and purified from the purple dye extracted from the mollusk Hexaplex trunculus


Molecule developed from marine mollusk overcomes risks of current methods

Human embryonic stem cell (HESC) lines, or cultures, in the U.S. are not suitable for use in the budding field of regenerative medicine. Their creation using mouse feeder cells, a specialized growth medium, allows scientists to study their basic characteristics, but ultimately the HESCs are too risky to develop in applied medicine because mouse-associated viruses possibly contaminate them.

Now, Rockefeller University researchers in collaboration with two European scientists, have discovered a way around this problem: they’ve devised a system for maintaining existing or new human stem cell lines that excludes the need for troublesome mouse feeder cells.



The findings also have an intriguing underpinning. A marine animal belonging to the gastropod mollusk group is the original source of the compound now in use in the new feeder-free system. The natural molecule from which the new compound has now been synthesized has been harvested for over 2500 years from the creature, known as the red mollusk, as a coveted purple dye.

The identification of the small molecule, pharmacological inhibitor system in stem cells, led by Ali Brivanlou, Ph.D., head of the laboratory of molecular vertebrate embryology and his research associate, Noburo Sato, Ph.D., so far demonstrates superior stability over other methods designed to circumvent the need for mouse feeder cells. Nature Medicine features Brivanlou, Sato and their colleagues’ results in its January 2004 edition. And though still early in the team’s experiments, the stem cells appear to progress and differentiate normally after the compound is removed.

This new system for maintaining pluripotency could be a providential break for basic researchers and clinicians investigating the potential of HESCs, as it is a potential first step in providing an unlimited source of tissue transplant if HESCs’ potential comes to fruition in clinical medicine.

It works like this: a newly purified compound from the purple dye of marine red mollusks - called 6-bromoindirubin-3’-oxime, or by its working acronym, "BIO"- has been shown by Rockefeller scientists to indirectly activate a crucial gene expression mechanism, called the Wnt signaling pathway, in embryonic cells. Wnt signaling occurs when the new compound inhibits a specific protein kinase in embryonic cells, called GSK-3. This enzyme plays an essential role in many normal and disease states from development to neurodegenerative disorders. It is involved in numerous pathways including a highly conserved and important one called the Wnt signaling pathway. When GSK-3 is inactivated, Wnt is active. Chemical inhibition of GSK-3 thus mimics activation of Wnt and this keeps HESCs in an active, undifferentiated state - one of the crucial basic qualities of embryonic stem cells.

"We know precisely how this compound works - that is, on which enzymes and pathways - and that it is very controllable," says Brivanlou. "This knowledge makes the compound useful not only in stem cell research but also, as we are already seeing in the lab, numerous other research areas."

The challenges of HESC applied research are well known, along with the possible rewards. Cultured stem cells must be capable of self-renewal in an undifferentiated state in order to be truly useful.

Brivanlou, a comparative embryologist who studies the basic molecular aspects of very early vertebrate embryonic development, studies embryonic stem cells to determine whether they truly possess the unique qualities with which they are credited. He along with his scientific colleagues already developed a set of research standards for determining what qualifies as an embryonic stem cell, and what remains to be confirmed about them before clinical researchers safely can consider using them in human research. The standards were published in Science in May 2003.

He also revealed, in 2003, a set of genetic markers for human embryonic stem cells, showing that they do not share a majority of their gene expression patterns with mouse embryonic stem cells, and that there is a highly specific genetic definition of embryonic cells that makes them stem cells - in other words, those cells that can give rise to all body cell types. This research was published in Developmental Biology in July 2003.

These accomplishments were deliberate and systematic. The new system hailed from an unanticipated source. Early in 2003, Laurent Meijer, a biochemist from the Roscoff Marine Biology Institute in France, while on sabbatical at Rockefeller University, studying protein kinases involved in neurodegenerative diseases in Dr. Paul Greengard’s laboratory, asked Brivanlou to test a new compound he and his Greek colleague, Leandros Skaltsounis, had derived from naturally- occurring indirubin of Mediterranean mollusks. The two scientists wanted to know if this new compound could act as a potent and selective pharmacological inhibitor of GSK-3, and therefore as potentially useful against neurodegenerative disorders.

"Protein kinases are very promising targets for the discovery of new therapeutic agents," says Meijer. "In particular, pharmacological inhibitors of GSK-3 have great potential for application to treat Alzheimer’s disease and other neurodegenerative disorders, as well as sleep disorders and depression." (There are 520 protein kinases encoded in the human genome.)

Brivanlou and his colleague Alin Vonica, M.D., Ph.D. confirmed that the synthetic compound was able to mimic Wnt activation in the classical model of frog early embryonic development. In the process, Brivanlou also discovered that the compound safely could arrest differentiation of stem cells in frog embryos, while allowing them to continue to self-renew.

Thus far, Brivanlou has applied the BIO compound to frog, mouse and human stem cells, with favorable results.

Lynn Love | Rockefeller University
Further information:
http://www.rockefeller.edu/pubinfo/010504b.php

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>