Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honey bee genome assembled

08.01.2004


The National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), today announced that the first draft version of the honey bee genome sequence has been deposited into free public databases.



The sequence of the honey bee, Apis mellifera, was assembled by a team led by Richard Gibbs, Ph.D., director of the Human Genome Sequencing Center at Baylor College of Medicine in Houston. The honey bee genome is about one-tenth the size of the human genome, containing about 300 million DNA base pairs.

Researchers have deposited the initial assembly, which is based on six-fold sequence coverage of the honey bee genome, into the NIH-run, public database, GenBank (www.ncbi.nih.gov/Genbank). In turn, Genbank will distribute the sequence data to the European Molecular Biology Laboratory’s Nucleotide Sequence Database, EMBL-Bank (www.ebi.ac.uk/embl/index.html), and the DNA Data Bank of Japan, DDBJ (www.ddbj.nig.ac.jp).


Sequencing of the honey bee genome began in early 2003. NHGRI provided about $6.9 million in funding for the project and the U.S. Department of Agriculture contributed $750,000.

The honey bee is valued by farmers for its ability to produce honey and pollinate crops. Besides its importance in agriculture, the honey bee serves as a model organism for studying human health issues including immunity, allergic reaction, antibiotic resistance, development, mental health, longevity and diseases of the X chromosome. Biologists also are interested in the honey bee’s social instincts and behavioral traits.

In addition, researchers want to compare the honey bee’s genome with the genomes of other organisms to find genes and regulatory regions within DNA. Scientists are particularly interested in comparing the honey bee’s genome with the previously sequenced insect genomes, such as the fruit fly and mosquito, as well as with DNA sequences from Africanized bee strains that have invaded many areas of the southern United States. For more on the rapidly growing field of comparative genomic analysis, go to: www.genome.gov/10005835.


To read the white paper outlining the scientific strategy for sequencing the honey bee genome, go to: http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/ HoneyBee_Genome.pdf.

NHGRI is one of 27 institutes and centers at NIH, an agency of the Department of Health and Human Services. The NHGRI Division of Extramural Research supports grants for research and for training and career development at sites nationwide. Information about NHGRI can be found at: www.genome.gov.

For additional information on the honey bee genome assembly, contact:
National Human Genome Research Institute
Geoff Spencer
301-402-0911
spencerg@mail.nih.gov

Baylor College of Medicine
Human Genome Sequencing Center
Heather Bonham
713-798-6495
hbonham@bcm.tmc.edu

USDA
Wayne Baggett
202-720-4623
wayne.baggett@usda.gov

Geoff Spencer | EurekAlert!
Further information:
http://www.ncbi.nih.gov/Genbank
http://www.ebi.ac.uk/embl/index.html
http://www.ddbj.nig.ac.jp

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>