Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite’s enzyme structure helps address a public health issue

06.01.2004


By revealing the architecture of an essential enzyme in a parasite, Dartmouth researchers are helping address a public health issue.



Researchers in the laboratory of Amy Anderson, Assistant Professor of Chemistry, have unveiled the structure of an enzyme called dihydrofolate reductase-thymidylate synthase, also known as DHFR-TS, from a waterborne parasite called Cryptosporidium hominis. Knowing the chemical structure of the enzyme will help researchers design highly targeted drugs to combat the parasite, which needs this enzyme to reproduce.

"We wanted to know how DHFR-TS is assembled and how it works," says Anderson. "Then we’ll know how to disable it and kill the parasite."


Anderson, along with Robert O’Neil, a senior researcher and the lead author of the study, Ryan Lilien, an M.D./Ph.D. graduate student at Dartmouth, Bruce Donald, Professor of Computer Science, and Robert Stroud, Biochemistry and Biophysics Professor at Univ. of Calif. at San Francisco, have solved the puzzle of DHFR-TS by revealing its chemical architecture.

Their results were electronically published on October 9 in an online issue of the Journal of Biological Chemistry, and the paper appeared in the print edition of the journal on December 26, 2003. The study was also rated as "exceptional" and a "hidden jewel in microbiology" by the Faculty of 1000, a group of researchers who rate published articles in the life sciences each month.

The Centers for Disease Control and Prevention (CDC) have been watching Cryptosporidium and tracking its impact on human populations, where it spreads easily and quickly, for more than 20 years. While healthy people stricken with this parasite usually recover on their own, it can be deadly for children, elderly people and those whose immune systems are compromised, like people with HIV/AIDS or patients undergoing chemotherapy. According to the CDC Web site, Cryptosporidium is often found in public water supplies in the U.S. and cannot be easily filtered out or killed by traditional treatments like chlorine. Currently, there is no cure, and available medicine only eases the symptoms.

The study helps better define the evolution of this protozoan family that includes Plasmodium, which causes malaria, and Toxoplasma, which induces toxoplasmosis, a disease that can lead to central nervous system disorders. Knowing how this one enzyme is assembled will help researchers better understand related parasites, Anderson says.

"By using the structure of many protozoan DHFR-TS enzymes, we’ve been able to place a number of protozoa in distinct evolutionary families. This is the first time that this enzyme has been used to do this," says Anderson. "It’s an important distinction that helps classify the protozoa, and helps us design more effective drugs to combat them."

To discover DHFR-TS’s nuts and bolts, Anderson and her team used a process called "protein crystallography." The process involves taking DNA from Cryptosporidium and cloning it in the fast-growing bacteria E. coli to harvest large amounts of the target enzyme. Researchers then break E. coli open to release all of its proteins. All of the proteins are mixed with beads, or tags, which "grab" just the DHFR-TS enzyme.

Once DHFR-TS has been isolated, it’s collected in a tube, concentrated and crystallized. The crystal, which is an ordered array of enzyme molecules, is subjected to a powerful X-ray beam. Diffracted X-rays emerge and are imprinted on a film. The researchers use mathematical algorithms to interpret the X-ray data, which eventually reveal the structure of the protein.

"We can place every atom in the protein, and we can chart their interactions," says Anderson. "We learn how the protein is put together and which atoms bond to one another. It’s important to learn the structure of a protein to figure out how it works."

Researchers in Anderson’s lab also work on the same enzyme model for Toxoplasma, cousin to Cryptosporidium. The advantage, Anderson explains, is that by solving this enzyme’s structure for both Cryptosporidium and Toxoplasma, they can better predict how it will look in their other family members, like Plasmodium, the malaria bug.

Anderson’s team is also working on "structure-based drug design" to carefully design drugs to interact with the specific enzyme to influence how the enzyme will function.

"We want to prevent DHFR-TS from doing its job in the parasitic organism without stopping the human enzyme that looks similar," says Anderson. "DHFR and TS have similar functions in humans: they are critical to DNA replication."


The National Institutes of Health funded this study.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>