Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite’s enzyme structure helps address a public health issue

06.01.2004


By revealing the architecture of an essential enzyme in a parasite, Dartmouth researchers are helping address a public health issue.



Researchers in the laboratory of Amy Anderson, Assistant Professor of Chemistry, have unveiled the structure of an enzyme called dihydrofolate reductase-thymidylate synthase, also known as DHFR-TS, from a waterborne parasite called Cryptosporidium hominis. Knowing the chemical structure of the enzyme will help researchers design highly targeted drugs to combat the parasite, which needs this enzyme to reproduce.

"We wanted to know how DHFR-TS is assembled and how it works," says Anderson. "Then we’ll know how to disable it and kill the parasite."


Anderson, along with Robert O’Neil, a senior researcher and the lead author of the study, Ryan Lilien, an M.D./Ph.D. graduate student at Dartmouth, Bruce Donald, Professor of Computer Science, and Robert Stroud, Biochemistry and Biophysics Professor at Univ. of Calif. at San Francisco, have solved the puzzle of DHFR-TS by revealing its chemical architecture.

Their results were electronically published on October 9 in an online issue of the Journal of Biological Chemistry, and the paper appeared in the print edition of the journal on December 26, 2003. The study was also rated as "exceptional" and a "hidden jewel in microbiology" by the Faculty of 1000, a group of researchers who rate published articles in the life sciences each month.

The Centers for Disease Control and Prevention (CDC) have been watching Cryptosporidium and tracking its impact on human populations, where it spreads easily and quickly, for more than 20 years. While healthy people stricken with this parasite usually recover on their own, it can be deadly for children, elderly people and those whose immune systems are compromised, like people with HIV/AIDS or patients undergoing chemotherapy. According to the CDC Web site, Cryptosporidium is often found in public water supplies in the U.S. and cannot be easily filtered out or killed by traditional treatments like chlorine. Currently, there is no cure, and available medicine only eases the symptoms.

The study helps better define the evolution of this protozoan family that includes Plasmodium, which causes malaria, and Toxoplasma, which induces toxoplasmosis, a disease that can lead to central nervous system disorders. Knowing how this one enzyme is assembled will help researchers better understand related parasites, Anderson says.

"By using the structure of many protozoan DHFR-TS enzymes, we’ve been able to place a number of protozoa in distinct evolutionary families. This is the first time that this enzyme has been used to do this," says Anderson. "It’s an important distinction that helps classify the protozoa, and helps us design more effective drugs to combat them."

To discover DHFR-TS’s nuts and bolts, Anderson and her team used a process called "protein crystallography." The process involves taking DNA from Cryptosporidium and cloning it in the fast-growing bacteria E. coli to harvest large amounts of the target enzyme. Researchers then break E. coli open to release all of its proteins. All of the proteins are mixed with beads, or tags, which "grab" just the DHFR-TS enzyme.

Once DHFR-TS has been isolated, it’s collected in a tube, concentrated and crystallized. The crystal, which is an ordered array of enzyme molecules, is subjected to a powerful X-ray beam. Diffracted X-rays emerge and are imprinted on a film. The researchers use mathematical algorithms to interpret the X-ray data, which eventually reveal the structure of the protein.

"We can place every atom in the protein, and we can chart their interactions," says Anderson. "We learn how the protein is put together and which atoms bond to one another. It’s important to learn the structure of a protein to figure out how it works."

Researchers in Anderson’s lab also work on the same enzyme model for Toxoplasma, cousin to Cryptosporidium. The advantage, Anderson explains, is that by solving this enzyme’s structure for both Cryptosporidium and Toxoplasma, they can better predict how it will look in their other family members, like Plasmodium, the malaria bug.

Anderson’s team is also working on "structure-based drug design" to carefully design drugs to interact with the specific enzyme to influence how the enzyme will function.

"We want to prevent DHFR-TS from doing its job in the parasitic organism without stopping the human enzyme that looks similar," says Anderson. "DHFR and TS have similar functions in humans: they are critical to DNA replication."


The National Institutes of Health funded this study.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>