Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Endurance of plants under quartz rocks possible model for life on early Earth, Mars

06.01.2004


Microscopic Mojave Desert plants growing on the underside of translucent quartz pebbles can endure both chilly and near-boiling temperatures, scavenge nitrogen from the air, and utilize the equivalent of nighttime moonlight levels for photosynthesis, a new study reports. The plants, which receive enough light through the pebbles to support photosynthesis, could offer a model for how plants first colonized land, as well as how they might have evolved on Mars, said the scientists who performed the study.



"Here you have a really bizarre habitat," said William Schlesinger, dean of Duke University’s Nicholas School of the Environment and principal author of a paper on the study that appears in the December, 2003 issue of the research journal Ecology, which was just published. "When I first went to the site in 1978 I thought: ’That’s weird, how do these plants photosynthesize?’ Then it dawned on me that they photosynthesized on the light coming through the rocks."

Years after he first noticed the primitive plants -- mostly species of blue-green algae -- growing under every quartz pebble he turned over at the site in California’s Joshua Tree National Park, Schlesinger assembled a scientific team to investigate the phenomenon. He said what the scientists learned suggests a possible way that land plants established their first toehold in the harsh conditions of the early Earth: by staying under cover.


Such habitats may also be "prime locations to search for extraterrestrial life" on other planets, wrote Schlesinger and his other team members in their paper. Other authors include Schlesinger’s technician Jeffrey Pippen and Duke graduate students Matthew Wallenstein and Kirsten Hofmockel; also Bruce Mahall of the University of California at Santa Barbara and Debra Klepeis, Mahall’s graduate student.

Under Schlesinger’s direction, Pippen counted 295 whitish, light transmitting quartz pebbles commingled with a much larger number of opaque black pebbles within a 1–by-50 meter desert test plot. The scientists found all quartz pebbles that were about one inch or less thick supported active plant colonies on their undersides. Quartz pebbles thicker than one inch still had rings of plant life around those parts of their bottom edges where sunlight could penetrate through the stone at an oblique angle.

By placing heat sensors above and below some of the pebbles in all four seasons, the scientists documented that living under the quartz pebbles kept the plants warmer in winter and cooler in summer compared to conditions underneath black pebbles. In fact, their Ecology paper suggested that sunlight transmitted through the translucent quartz might "confer a modest greenhouse effect" during the cooler months, in essence trapping some of the sun’s heat.

Comparatively moderate though they were, temperatures underneath the quartz pebbles still logged as low at 41 degrees Fahrenheit in January and almost 150 degrees Fahrenheit at midday in August under harsh desert conditions.

The researchers then brought some pebble samples back to their laboratory at Duke and heated them to 194 degrees for six hours. Despite that ordeal in the lab, when the baked rocks were then moistened, their resident plant colonies proved still able to photosynthesize. Photosynthesis is the process by which plants synthesize sugars using atmospheric carbon dioxide through the action of light on green chlorophyll molecules.

The algae’s demonstration of high temperature resilience presented a paradox, because chlorophyll molecules themselves normally begin to degrade at about 167 degrees, according to Schlesinger, who is a biogeochemist and ecologist. "Either they have some special kind of chlorophyll, or they were in a resting phase which bacterial groups can go into to get through really extreme conditions," Schlesinger said. Blue- green algae are more properly called cyanobacteria.

Wallenstein’s DNA identification of the algae species in plant colony samples revealed 26 different kinds of cyanobacteria. Of those, the Ecology paper suggested that five species may be previously unknown to science.

Cyanobacteria are suspected of being "one of the first colonizers of land" on Earth, Schlesinger noted -- a time when there was no atmospheric ozone shield to block harmful solar ultraviolet radiation and no nitrogen-rich topsoil covering the ground. The lack of soil nitrogen provided no obstacle for the plant colonies living under the quartz rocks. Hofmockel, another of Schlesinger’s graduate students, found those algae obtain the nitrogen they needed for growth directly from the air like some less primitive plants are also able to do.

The UC Santa Barbara researchers found that the pebbles did not filter out more ultraviolet rays than they did other wavelengths of sunlight, meaning that quartz did not provide an especially protective environment. On the other hand, analysis also showed that that only about .08 percent of the light of any wavelength that entered one-inch-thick pebbles could reach plants on the other end. "That’s pretty shady," Schlesinger added. "That’s like photosythesizing by moonlight on the bottom of the thickest rocks."

"The growth of hypolithic (beneath rocks) algae under diaphanous quartz pebbles in the Mojave Desert is another illustration of the successful microbial exploitation of a novel habitat in an otherwise harsh environment," the authors concluded in their Ecology paper. "Similar environments might harbor life on other planets," the paper added.

While the paper did not specify which other planets, Schlesinger singled out Mars, whose surface is known to harbor quartz rock, be extremely dry and cold, and receive larger doses of ultraviolet radiation than Earth’s surface does today "Right now Mars doesn’t look too good for life," Schlesinger said. "But if Mars had something alive two billion years ago, when it is believed to have been slightly wetter, this might have been where that something lived."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>