Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Dance of the molecules


New method tracking single atoms may lead to improved drug design

Until now, scientists studying the workings of ultra-microscopic forms have had to rely on the scientific equivalents of still photos, something like trying to fathom driving by looking at a photograph of a car. Now, Prof. Irit Sagi and her team of the Structural Biology Department are using new and innovative methods developed at the Weizmann Institute to see real-time "video clips" of enzyme molecules at work. The resolution of these animated clips is so fine that the scientists are able to see the movements of individual atoms within the molecule.

The challenge facing the Weizmann team was to capture, step-by-step, the complex process -- the whole of which takes place in a tiny fraction of a second -- that an enzyme molecule goes through as it performs its work. Their pioneering method was published in Nature Structural Biology. It was hailed as the first of its kind, and a potentially important tool for biophysicists.

To obtain the "live action" footage, Sagi and her team use a technique akin to stop-action photography, but on an infinitely smaller scale. They literally freeze the process at certain stages, using advanced methods of chemical analysis to determine the exact molecular layout at each stage. The most difficult part, says Sagi, was figuring out the correct time frames that would allow them to see each phase of enzyme activity clearly. She compares it to attempting to capture on film the swirling of syrup being mixed into cake batter – one has to gauge at what points individual stages of the process will be most visible.

Building an animated sequence from individual frames, the scientists are granted a rare peek into the intricate dance of life on the molecular level. "This method," says Sagi, "represents more than a major breakthrough in the techniques used to understand enzyme activity. It changes the whole paradigm of drug formulation. Now we can precisely identify which parts of the molecule are the active regions (those which directly perform tasks), and the exact permutations of these molecular segments throughout the whole process. New, synthetic drugs can be designed to target specific actions or critical configurations."

Sagi’s team is doing just that for one enzyme family known to play a role in cancer metastasis. Matrix metalloproteinases (MMPs), assist the cancer cells’ escape and entry into new tissues by breaking down the structural proteins that keep cells in place, a skill normally needed to clear out tissue in preparation for growth or repair. Using the knowledge gained by the new technique, the team designed a molecule to block MMPs at one crucial step in their dance.

Prof. Irit Sagi’s research is supported by the Avron-Wilstaetter Minerva Center; the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; the Ceil and Joseph Mazer Center for Structural Biology; the Jakubskind-Cymerman Prize; the Laub Fund for Oncogene Research; Prof. Clotilde Pontecorvo, Italy; and Verband der Chemischen Industrie.

Alex Smith | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>