Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dance of the molecules

06.01.2004


New method tracking single atoms may lead to improved drug design



Until now, scientists studying the workings of ultra-microscopic forms have had to rely on the scientific equivalents of still photos, something like trying to fathom driving by looking at a photograph of a car. Now, Prof. Irit Sagi and her team of the Structural Biology Department are using new and innovative methods developed at the Weizmann Institute to see real-time "video clips" of enzyme molecules at work. The resolution of these animated clips is so fine that the scientists are able to see the movements of individual atoms within the molecule.

The challenge facing the Weizmann team was to capture, step-by-step, the complex process -- the whole of which takes place in a tiny fraction of a second -- that an enzyme molecule goes through as it performs its work. Their pioneering method was published in Nature Structural Biology. It was hailed as the first of its kind, and a potentially important tool for biophysicists.


To obtain the "live action" footage, Sagi and her team use a technique akin to stop-action photography, but on an infinitely smaller scale. They literally freeze the process at certain stages, using advanced methods of chemical analysis to determine the exact molecular layout at each stage. The most difficult part, says Sagi, was figuring out the correct time frames that would allow them to see each phase of enzyme activity clearly. She compares it to attempting to capture on film the swirling of syrup being mixed into cake batter – one has to gauge at what points individual stages of the process will be most visible.

Building an animated sequence from individual frames, the scientists are granted a rare peek into the intricate dance of life on the molecular level. "This method," says Sagi, "represents more than a major breakthrough in the techniques used to understand enzyme activity. It changes the whole paradigm of drug formulation. Now we can precisely identify which parts of the molecule are the active regions (those which directly perform tasks), and the exact permutations of these molecular segments throughout the whole process. New, synthetic drugs can be designed to target specific actions or critical configurations."

Sagi’s team is doing just that for one enzyme family known to play a role in cancer metastasis. Matrix metalloproteinases (MMPs), assist the cancer cells’ escape and entry into new tissues by breaking down the structural proteins that keep cells in place, a skill normally needed to clear out tissue in preparation for growth or repair. Using the knowledge gained by the new technique, the team designed a molecule to block MMPs at one crucial step in their dance.

Prof. Irit Sagi’s research is supported by the Avron-Wilstaetter Minerva Center; the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; the Ceil and Joseph Mazer Center for Structural Biology; the Jakubskind-Cymerman Prize; the Laub Fund for Oncogene Research; Prof. Clotilde Pontecorvo, Italy; and Verband der Chemischen Industrie.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>