Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dance of the molecules

06.01.2004


New method tracking single atoms may lead to improved drug design



Until now, scientists studying the workings of ultra-microscopic forms have had to rely on the scientific equivalents of still photos, something like trying to fathom driving by looking at a photograph of a car. Now, Prof. Irit Sagi and her team of the Structural Biology Department are using new and innovative methods developed at the Weizmann Institute to see real-time "video clips" of enzyme molecules at work. The resolution of these animated clips is so fine that the scientists are able to see the movements of individual atoms within the molecule.

The challenge facing the Weizmann team was to capture, step-by-step, the complex process -- the whole of which takes place in a tiny fraction of a second -- that an enzyme molecule goes through as it performs its work. Their pioneering method was published in Nature Structural Biology. It was hailed as the first of its kind, and a potentially important tool for biophysicists.


To obtain the "live action" footage, Sagi and her team use a technique akin to stop-action photography, but on an infinitely smaller scale. They literally freeze the process at certain stages, using advanced methods of chemical analysis to determine the exact molecular layout at each stage. The most difficult part, says Sagi, was figuring out the correct time frames that would allow them to see each phase of enzyme activity clearly. She compares it to attempting to capture on film the swirling of syrup being mixed into cake batter – one has to gauge at what points individual stages of the process will be most visible.

Building an animated sequence from individual frames, the scientists are granted a rare peek into the intricate dance of life on the molecular level. "This method," says Sagi, "represents more than a major breakthrough in the techniques used to understand enzyme activity. It changes the whole paradigm of drug formulation. Now we can precisely identify which parts of the molecule are the active regions (those which directly perform tasks), and the exact permutations of these molecular segments throughout the whole process. New, synthetic drugs can be designed to target specific actions or critical configurations."

Sagi’s team is doing just that for one enzyme family known to play a role in cancer metastasis. Matrix metalloproteinases (MMPs), assist the cancer cells’ escape and entry into new tissues by breaking down the structural proteins that keep cells in place, a skill normally needed to clear out tissue in preparation for growth or repair. Using the knowledge gained by the new technique, the team designed a molecule to block MMPs at one crucial step in their dance.

Prof. Irit Sagi’s research is supported by the Avron-Wilstaetter Minerva Center; the Helen and Milton A. Kimmelman Center for Biomolecular Structure and Assembly; the Ceil and Joseph Mazer Center for Structural Biology; the Jakubskind-Cymerman Prize; the Laub Fund for Oncogene Research; Prof. Clotilde Pontecorvo, Italy; and Verband der Chemischen Industrie.

Alex Smith | EurekAlert!
Further information:
http://www.weizmann.ac.il/

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>