Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist challenges interpretation of new find, the oldest primate fossil ever discovered

31.12.2003


Find opens debate about whether man’s earliest ancestors came from Asia and were diurnal or nocturnal



A skull and jawbones recently found in China is the oldest well-preserved primate fossil ever discovered – as well as the best evidence of the presence of early primates in Asia. But the fossil raises the tantalizing possibility that remote human ancestors may have originated in Asia and stirs up debate about the nature of early primates.

In the words of Robert D. Martin, Provost and Vice President of Academic Affairs at Chicago’s Field Museum, "It was once thought that primates originated in North America because that’s where the earliest fossils were found initially; but we should be more open-minded. We still do not know the area of origin of the primate lineage that eventually led to humans, and this new find firmly brings Asia into the picture."


Xijun Ni and colleagues describe the fossil as Teilhardina asiatica, a new species of a genus first recognized from Belgium, in the Jan. 1, 2004, issue of Nature. At 28 grams, T. asiatica is smaller than any modern primate, and its size and sharp tooth cusps indicate that it was an insect-eater.

But a "News & Views" commentary in the same issue of Nature by Dr. Martin disagrees with part of the authors’ interpretation of their new find.

Based on T. asiatica’s small eye sockets relative to skull length, Ni and colleagues maintain that the small predator was diurnal (active during the day). Dr. Martin, on the other hand, says there is no compelling evidence from the fossil to shake the traditional belief that the common ancestor of primates, and early representatives such as members of the genus Teilhardina, were nocturnal (active at night).

"I disagree with the authors on both statistical and biological grounds," Dr. Martin says. "They excluded significant data in their analysis, and they did not adequately account for certain biological features, including the very large opening on the snout for the nerve connecting with the whiskers, which are best developed in nocturnal mammals."

Dispersal and biogeography

The earliest known undoubted primate fossils are about 55-million-years old from sites in North America, Europe – and now Asia. Scientists had previously classified six of them in the genus Teilhardina. Ni adds T. asiatica to that group, which might therefore be thought to have dispersed throughout the northern continents.

Dr. Martin agrees that the new fossil belongs to the genus Teilhardina, but he argues that only it and T. belgica, found in Europe, belong there because of their shared traits. "The remaining five species previously identified as Teilhardina must, in fact, be from a quite separate genus," he said. "And this means Teilhardina was restricted to Europe and Asia and probably did not disperse all the way to what is now North America."

Dr. Martin’s views have wider implications for biogeography, as well. Until recently, scientists believed that direct migration of primates between Asia and Europe around 55 million years ago would not have been possible due to a transcontinental marine barrier that ran from north to south down the middle of Eurasia at the time. Now, the presence of closely related Teilhardina species in China and Belgium adds to mounting evidence that primates and other mammals were able to migrate directly between Europe and Asia 55 million years ago.

In any event, Dr. Martin hails the new fossil as a very significant find. "It provides crucial new information about early primates in Asia that will help us understand the earliest beginnings of the branch that eventually led to human evolution," he said.

Field Museum | EurekAlert!
Further information:
http://www.fieldmuseum.org/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>