Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running afowl: NU researchers first to measure energy used by leg muscles

05.01.2004


Researchers at Northeastern University today announced that they have demonstrated that, contrary to previous research, swinging the limbs during the act of running requires a significant fraction of energy. In contrast to the established hypothesis, which asserted that force produced when the foot is on the ground (stance-phase) is the only determinant of the energy cost of running, Northeastern researchers observed that a significant fraction energy was used to fuel muscles that move the limb while it is off the ground (swing-phase).



In the study, the researchers estimated energy use by measuring blood flow to the hind leg muscles of guinea fowl in an effort to better explain the energetics of walking and running. In contrast to C. Richard Taylor’s “force hypothesis,” which suggests that swing-phase costs were low enough to be ignored, the researchers were able to demonstrate that the swing-phase muscles, in fact, consume 26 percent of the energy used by the limbs when running while the stance-phase muscles consume the remaining 74 percent of the energy. These findings represent the first time anyone has been able to look directly at the muscles during running and suggest that the force hypothesis needs modification. The swinging motion backwards is,indeed, the researchers assert, expensive energy-wise. Results of the study were published in the January 2nd issue of Science.

“The pioneering effect of this research is that by looking directly at blood flow to all of the individual muscles during running we were able to establish more directly the consumption of energy during the swing-phase,” said Marsh. “Taylor’s force hypothesis tried to unify the mechanics and energetics of running and explain the effects of body size and locomotor speed on the energy cost of running. Not everyone was necessarily convinced of all of the details of this hypothesis, but no one had been able to prove otherwise because most research on running has been based externally observable phenomena. By being able to estimate the energy use by the individual muscles, we were able to account to for energy consumption during swing-phase. Our work maintains Taylor’s emphasis on using energetics to understand terrestrial locomotion, but our findings suggest the force hypothesis will need to be modified to account for a more detailed partitioning of the energetics among muscles used during running.”


Senior author of the article titled, “Partitioning the Energetic of Walking and Running: Swinging the Limbs is Expensive,” is Richard Marsh from the department of biology at Northeastern University. Contributors to the article include NU researchers Jennifer Carr, Havalee Henry and Cindy Buchanan and David Ellerby from the University of Leeds in England.

This ability to demonstrate energy consumption in the swing-phase of running is significant because it provides a technique to answer other questions about the energetics of running, which could lead to a more in-depth understanding of which specific muscles are used to support weight and how changes in energy use are caused by differences in body size and speed. The report’s findings may potentially improve our current knowledge of rehabilitative medicine.

“The potential application of these findings are many,” said Marsh. “Future research will allow us to connect the mechanical functions of individual muscles with their energy use. This detailed information will be useful in models that integrate the energetics and mechanics of running. Because running birds are the best bipedal runners other than humans, our research should provide many valuable clues to understanding human locomotion.”

Northeastern University, located in the heart of Boston, Massachusetts, is a world leader in cooperative education and recognized for its expert faculty and first-rate academic and research facilities. Through co-op, Northeastern undergraduates alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, giving them nearly two years of professional experience upon graduation. The majority of Northeastern graduates receive a job offer from a co-op employer. Cited for excellence two years running by U.S. News & World Report, Northeastern was named a top college in the northeast by the Princeton Review 2003/04. In addition, Northeastern’s career services was awarded top honors by Kaplan Newsweek’s “Unofficial Insiders Guide to the 320 Most Interesting Colleges and Universities,” 2003 edition. For more information, please visit www.northeastern.edu.

Steve Sylven | Northeastern University
Further information:
http://www.nupr.neu.edu/01-04/marsh_science.html
http://www.northeastern.edu

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>