Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running afowl: NU researchers first to measure energy used by leg muscles

05.01.2004


Researchers at Northeastern University today announced that they have demonstrated that, contrary to previous research, swinging the limbs during the act of running requires a significant fraction of energy. In contrast to the established hypothesis, which asserted that force produced when the foot is on the ground (stance-phase) is the only determinant of the energy cost of running, Northeastern researchers observed that a significant fraction energy was used to fuel muscles that move the limb while it is off the ground (swing-phase).



In the study, the researchers estimated energy use by measuring blood flow to the hind leg muscles of guinea fowl in an effort to better explain the energetics of walking and running. In contrast to C. Richard Taylor’s “force hypothesis,” which suggests that swing-phase costs were low enough to be ignored, the researchers were able to demonstrate that the swing-phase muscles, in fact, consume 26 percent of the energy used by the limbs when running while the stance-phase muscles consume the remaining 74 percent of the energy. These findings represent the first time anyone has been able to look directly at the muscles during running and suggest that the force hypothesis needs modification. The swinging motion backwards is,indeed, the researchers assert, expensive energy-wise. Results of the study were published in the January 2nd issue of Science.

“The pioneering effect of this research is that by looking directly at blood flow to all of the individual muscles during running we were able to establish more directly the consumption of energy during the swing-phase,” said Marsh. “Taylor’s force hypothesis tried to unify the mechanics and energetics of running and explain the effects of body size and locomotor speed on the energy cost of running. Not everyone was necessarily convinced of all of the details of this hypothesis, but no one had been able to prove otherwise because most research on running has been based externally observable phenomena. By being able to estimate the energy use by the individual muscles, we were able to account to for energy consumption during swing-phase. Our work maintains Taylor’s emphasis on using energetics to understand terrestrial locomotion, but our findings suggest the force hypothesis will need to be modified to account for a more detailed partitioning of the energetics among muscles used during running.”


Senior author of the article titled, “Partitioning the Energetic of Walking and Running: Swinging the Limbs is Expensive,” is Richard Marsh from the department of biology at Northeastern University. Contributors to the article include NU researchers Jennifer Carr, Havalee Henry and Cindy Buchanan and David Ellerby from the University of Leeds in England.

This ability to demonstrate energy consumption in the swing-phase of running is significant because it provides a technique to answer other questions about the energetics of running, which could lead to a more in-depth understanding of which specific muscles are used to support weight and how changes in energy use are caused by differences in body size and speed. The report’s findings may potentially improve our current knowledge of rehabilitative medicine.

“The potential application of these findings are many,” said Marsh. “Future research will allow us to connect the mechanical functions of individual muscles with their energy use. This detailed information will be useful in models that integrate the energetics and mechanics of running. Because running birds are the best bipedal runners other than humans, our research should provide many valuable clues to understanding human locomotion.”

Northeastern University, located in the heart of Boston, Massachusetts, is a world leader in cooperative education and recognized for its expert faculty and first-rate academic and research facilities. Through co-op, Northeastern undergraduates alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, giving them nearly two years of professional experience upon graduation. The majority of Northeastern graduates receive a job offer from a co-op employer. Cited for excellence two years running by U.S. News & World Report, Northeastern was named a top college in the northeast by the Princeton Review 2003/04. In addition, Northeastern’s career services was awarded top honors by Kaplan Newsweek’s “Unofficial Insiders Guide to the 320 Most Interesting Colleges and Universities,” 2003 edition. For more information, please visit www.northeastern.edu.

Steve Sylven | Northeastern University
Further information:
http://www.nupr.neu.edu/01-04/marsh_science.html
http://www.northeastern.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>