Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Running afowl: NU researchers first to measure energy used by leg muscles

05.01.2004


Researchers at Northeastern University today announced that they have demonstrated that, contrary to previous research, swinging the limbs during the act of running requires a significant fraction of energy. In contrast to the established hypothesis, which asserted that force produced when the foot is on the ground (stance-phase) is the only determinant of the energy cost of running, Northeastern researchers observed that a significant fraction energy was used to fuel muscles that move the limb while it is off the ground (swing-phase).



In the study, the researchers estimated energy use by measuring blood flow to the hind leg muscles of guinea fowl in an effort to better explain the energetics of walking and running. In contrast to C. Richard Taylor’s “force hypothesis,” which suggests that swing-phase costs were low enough to be ignored, the researchers were able to demonstrate that the swing-phase muscles, in fact, consume 26 percent of the energy used by the limbs when running while the stance-phase muscles consume the remaining 74 percent of the energy. These findings represent the first time anyone has been able to look directly at the muscles during running and suggest that the force hypothesis needs modification. The swinging motion backwards is,indeed, the researchers assert, expensive energy-wise. Results of the study were published in the January 2nd issue of Science.

“The pioneering effect of this research is that by looking directly at blood flow to all of the individual muscles during running we were able to establish more directly the consumption of energy during the swing-phase,” said Marsh. “Taylor’s force hypothesis tried to unify the mechanics and energetics of running and explain the effects of body size and locomotor speed on the energy cost of running. Not everyone was necessarily convinced of all of the details of this hypothesis, but no one had been able to prove otherwise because most research on running has been based externally observable phenomena. By being able to estimate the energy use by the individual muscles, we were able to account to for energy consumption during swing-phase. Our work maintains Taylor’s emphasis on using energetics to understand terrestrial locomotion, but our findings suggest the force hypothesis will need to be modified to account for a more detailed partitioning of the energetics among muscles used during running.”


Senior author of the article titled, “Partitioning the Energetic of Walking and Running: Swinging the Limbs is Expensive,” is Richard Marsh from the department of biology at Northeastern University. Contributors to the article include NU researchers Jennifer Carr, Havalee Henry and Cindy Buchanan and David Ellerby from the University of Leeds in England.

This ability to demonstrate energy consumption in the swing-phase of running is significant because it provides a technique to answer other questions about the energetics of running, which could lead to a more in-depth understanding of which specific muscles are used to support weight and how changes in energy use are caused by differences in body size and speed. The report’s findings may potentially improve our current knowledge of rehabilitative medicine.

“The potential application of these findings are many,” said Marsh. “Future research will allow us to connect the mechanical functions of individual muscles with their energy use. This detailed information will be useful in models that integrate the energetics and mechanics of running. Because running birds are the best bipedal runners other than humans, our research should provide many valuable clues to understanding human locomotion.”

Northeastern University, located in the heart of Boston, Massachusetts, is a world leader in cooperative education and recognized for its expert faculty and first-rate academic and research facilities. Through co-op, Northeastern undergraduates alternate semesters of full-time study with semesters of paid work in fields relevant to their professional interests and major, giving them nearly two years of professional experience upon graduation. The majority of Northeastern graduates receive a job offer from a co-op employer. Cited for excellence two years running by U.S. News & World Report, Northeastern was named a top college in the northeast by the Princeton Review 2003/04. In addition, Northeastern’s career services was awarded top honors by Kaplan Newsweek’s “Unofficial Insiders Guide to the 320 Most Interesting Colleges and Universities,” 2003 edition. For more information, please visit www.northeastern.edu.

Steve Sylven | Northeastern University
Further information:
http://www.nupr.neu.edu/01-04/marsh_science.html
http://www.northeastern.edu

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>