Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover What Plants Do During Long Winter Nights

02.01.2004


In research published today scientists at the John Innes Centre (JIC), Norwich(1), report on what plants do during the hours of darkness. During daylight hours plants use the energy from sunlight to power the production of food (sugar) from carbon dioxide and water. This process (photosynthesis) is well understood, but what happens when the sun goes down? The JIC researchers have found a previously unknown sugar transport system within plants and this has, for the first time, shed light on what plants do in the darkness. Their research is published in two related papers in international science journals ‘Science’ and ‘The Plant Journal’(2).

That plants use energy from sunlight to power the production of sugar from carbon dioxide and water is familiar to many people. Photosynthesis is a hugely important process because it sustains most of the food chains on the planet as well as recycling carbon dioxide and producing oxygen. Worldwide, plants use solar energy to capture millions of tonnes of carbon dioxide every day. They convert it first to sugar and then to carbohydrate, fat and protein – some of which we harvest for food.

”Photosynthesis is well understood, but our discovery is really exciting because it gives us a new insight into how plants control the use of the sugar that they produce” said Professor Alison Smith (Head of the Metabolic Biology Department and leader of the research team at the JIC). “We already know that sugar is the starting point for all of the processes of plant growth and development, but our work shows how plants ensure that even in the darkness of long winter nights, they have sufficient sugar to meet their needs”.



As well as making sugars from carbon dioxide, photosynthesis also makes some starch. This is temporarily stored in the leaf during the day. At night, when photosynthesis and hence conversion of carbon dioxide to sugars is not possible, the starch is broken down to make sugars. This maintains the supply of sugars, thereby allowing the plant to survive and grow during the hours of darkness. The discovery by John Innes Centre scientists reveals for the first time the mechanisms inside leaves that are responsible for converting millions of tonnes of starch to sugars each night.

The way that plants use the sugar they make in photosynthesis is of enormous significance in agriculture. Understanding how the sugar is used will enable plant breeders to develop crops in which more of the sugar goes into useful products in the seeds, leaves and tubers of crops. This will increase agricultural efficiency by increasing the proportion of useful material that crops produce. Conversion of starch into sugars is also of great significance in controlling the sweetness, taste, quality and storage characteristics of many fruits. In tomatoes, for example, higher starch content both improves processing quality and reduces the energy required for processing.

Ray Mathias | alfa
Further information:
http://www.jic.ac.uk
http://www.blackwellpublishing.com/journals/tpj

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>