Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover What Plants Do During Long Winter Nights

02.01.2004


In research published today scientists at the John Innes Centre (JIC), Norwich(1), report on what plants do during the hours of darkness. During daylight hours plants use the energy from sunlight to power the production of food (sugar) from carbon dioxide and water. This process (photosynthesis) is well understood, but what happens when the sun goes down? The JIC researchers have found a previously unknown sugar transport system within plants and this has, for the first time, shed light on what plants do in the darkness. Their research is published in two related papers in international science journals ‘Science’ and ‘The Plant Journal’(2).

That plants use energy from sunlight to power the production of sugar from carbon dioxide and water is familiar to many people. Photosynthesis is a hugely important process because it sustains most of the food chains on the planet as well as recycling carbon dioxide and producing oxygen. Worldwide, plants use solar energy to capture millions of tonnes of carbon dioxide every day. They convert it first to sugar and then to carbohydrate, fat and protein – some of which we harvest for food.

”Photosynthesis is well understood, but our discovery is really exciting because it gives us a new insight into how plants control the use of the sugar that they produce” said Professor Alison Smith (Head of the Metabolic Biology Department and leader of the research team at the JIC). “We already know that sugar is the starting point for all of the processes of plant growth and development, but our work shows how plants ensure that even in the darkness of long winter nights, they have sufficient sugar to meet their needs”.



As well as making sugars from carbon dioxide, photosynthesis also makes some starch. This is temporarily stored in the leaf during the day. At night, when photosynthesis and hence conversion of carbon dioxide to sugars is not possible, the starch is broken down to make sugars. This maintains the supply of sugars, thereby allowing the plant to survive and grow during the hours of darkness. The discovery by John Innes Centre scientists reveals for the first time the mechanisms inside leaves that are responsible for converting millions of tonnes of starch to sugars each night.

The way that plants use the sugar they make in photosynthesis is of enormous significance in agriculture. Understanding how the sugar is used will enable plant breeders to develop crops in which more of the sugar goes into useful products in the seeds, leaves and tubers of crops. This will increase agricultural efficiency by increasing the proportion of useful material that crops produce. Conversion of starch into sugars is also of great significance in controlling the sweetness, taste, quality and storage characteristics of many fruits. In tomatoes, for example, higher starch content both improves processing quality and reduces the energy required for processing.

Ray Mathias | alfa
Further information:
http://www.jic.ac.uk
http://www.blackwellpublishing.com/journals/tpj

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>