Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover What Plants Do During Long Winter Nights

02.01.2004


In research published today scientists at the John Innes Centre (JIC), Norwich(1), report on what plants do during the hours of darkness. During daylight hours plants use the energy from sunlight to power the production of food (sugar) from carbon dioxide and water. This process (photosynthesis) is well understood, but what happens when the sun goes down? The JIC researchers have found a previously unknown sugar transport system within plants and this has, for the first time, shed light on what plants do in the darkness. Their research is published in two related papers in international science journals ‘Science’ and ‘The Plant Journal’(2).

That plants use energy from sunlight to power the production of sugar from carbon dioxide and water is familiar to many people. Photosynthesis is a hugely important process because it sustains most of the food chains on the planet as well as recycling carbon dioxide and producing oxygen. Worldwide, plants use solar energy to capture millions of tonnes of carbon dioxide every day. They convert it first to sugar and then to carbohydrate, fat and protein – some of which we harvest for food.

”Photosynthesis is well understood, but our discovery is really exciting because it gives us a new insight into how plants control the use of the sugar that they produce” said Professor Alison Smith (Head of the Metabolic Biology Department and leader of the research team at the JIC). “We already know that sugar is the starting point for all of the processes of plant growth and development, but our work shows how plants ensure that even in the darkness of long winter nights, they have sufficient sugar to meet their needs”.



As well as making sugars from carbon dioxide, photosynthesis also makes some starch. This is temporarily stored in the leaf during the day. At night, when photosynthesis and hence conversion of carbon dioxide to sugars is not possible, the starch is broken down to make sugars. This maintains the supply of sugars, thereby allowing the plant to survive and grow during the hours of darkness. The discovery by John Innes Centre scientists reveals for the first time the mechanisms inside leaves that are responsible for converting millions of tonnes of starch to sugars each night.

The way that plants use the sugar they make in photosynthesis is of enormous significance in agriculture. Understanding how the sugar is used will enable plant breeders to develop crops in which more of the sugar goes into useful products in the seeds, leaves and tubers of crops. This will increase agricultural efficiency by increasing the proportion of useful material that crops produce. Conversion of starch into sugars is also of great significance in controlling the sweetness, taste, quality and storage characteristics of many fruits. In tomatoes, for example, higher starch content both improves processing quality and reduces the energy required for processing.

Ray Mathias | alfa
Further information:
http://www.jic.ac.uk
http://www.blackwellpublishing.com/journals/tpj

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>