Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Regenerative chemical turns muscle cells into stem cells


A group of researchers from The Scripps Research Institute has identified a small synthetic molecule that can induce a cell to undergo dedifferentiation - to move backwards developmentally from its current state to form its own precursor cell.

This compound, named reversine, causes cells which are normally programmed to form muscles to undergo reverse differentiation - retreat along their differentiation pathway and turn into precursor cells.

These precursor cells are multipotent; that is, they have the potential to become different cell types. Thus, reversine represents a potentially useful tool for generating unlimited supply of such precursors, which subsequently can be converted to other cell types, such as bone or cartilage.

"This [type of approach] has the potential to make stem cell research more practical," says Sheng Ding, Ph.D. "This will allow you to derive stem-like cells from your own mature cells, avoiding the technical and ethical issues associated with embryonic stem cells."

Ding, who is an assistant professor in the chemistry department at Scripps Research conducted the study--to be published in an upcoming issue of the Journal of the American Chemical Society--with Peter G. Schultz, Ph.D., who is a professor of chemistry and Scripps Family Chair of Scripps Research’s Skaggs Institute of Chemical Biology, and their colleagues.

Regenerative Medicine and Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types--potentially providing doctors with the ability to produce cells that have been permanently lost by a patient.

For instance, the damage of neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. Another example of a potential medical application is Type 1 diabetes, an autoimmune condition in which pancreatic islet cells are destroyed by the body’s immune system. Because stem cells have the power to differentiate into islet cells, stem cell therapy could potentially cure this chronic condition.

However bright this promise, many barriers must be overcome before stem cells can be used in medicine. Stem cell therapy would be most effective if you could use your own stem cells, since using one’s own cells would avoid potential complications from immune rejection of foreign cells. However, in general it has proven very difficult to isolate and propagate stem cells from adults. Embryonic stem cells (ESCs) offer an alternative, but face both practical and ethical hurdles associated with the source of cells as well as methods for controlling the differentiation of ESCs. A third approach is to use one’s own specialized cells and dedifferentiate them.

Normally, cells develop along a pathway of increasing specialization. Muscles, for instance, develop after embryonic stem cells develop into "mesenchymal" progenitor cells, which then develop into "myogenic" cells. These muscle cells fuse and form the fibrous bundles we know as muscles.

In humans and other mammals, these developmental events are irreversible, and in this sense, cell development resembles a family tree. One wouldn’t expect a muscle cell to develop into a progenitor cell any more than one would expect a woman to give birth to her own mother.

However, such phenomena do happen in nature from time to time.

Some amphibians have the ability to regenerate body parts that are severed by using dedifferentiation. When the unlucky amphibian loses a limb or its tail, the cells at the site of the wound will undergo dedifferentiation and form progenitor cells, which will then multiply and redifferentiate into specialized cells as they form an identical replacement to the missing limb or tail. In humans, the liver is unique in its regenerative capacity, possibly also involving dedifferentiation mechanism.

The Scripps Research scientists hope to find ways of mimicking this natural regeneration by finding chemicals that will allow them to develop efficient dedifferentiation processes whereby healthy, abundant, and easily accessible adult cells could be used to generate stem-like precursor cells, from which they could make different types of functional cells for repair of damaged tissues. Reversine is one of the first steps in this process.

However, tissue regeneration is years away at best, and at the moment, Schultz and Ding are still working on understanding the exact biochemical mechanism whereby reversine causes the muscle cells to dedifferentiate into their progenitors, as well as attempting to improve the efficiency of the process. "This [type of research] may ultimately facilitate development of small molecule therapeutics for stimulating the body’s own regeneration," says Ding. "They are the future regenerative medicine."

The article, "Dedifferentiation of Lineage-Committed Cells by a Small Molecule" is authored by Shuibing Chen, Qisheng Zhang, Xu Wu, Peter G. Schultz, and Sheng Ding and is available to online subscribers of the Journal of the American Chemical Society at: The article will also be published in an upcoming issue of JACS.

This work was supported by The Skaggs Institute for Research and the Novartis Research Foundation.

Jason Bardi | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>