Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regenerative chemical turns muscle cells into stem cells

23.12.2003


A group of researchers from The Scripps Research Institute has identified a small synthetic molecule that can induce a cell to undergo dedifferentiation - to move backwards developmentally from its current state to form its own precursor cell.


This compound, named reversine, causes cells which are normally programmed to form muscles to undergo reverse differentiation - retreat along their differentiation pathway and turn into precursor cells.

These precursor cells are multipotent; that is, they have the potential to become different cell types. Thus, reversine represents a potentially useful tool for generating unlimited supply of such precursors, which subsequently can be converted to other cell types, such as bone or cartilage.

"This [type of approach] has the potential to make stem cell research more practical," says Sheng Ding, Ph.D. "This will allow you to derive stem-like cells from your own mature cells, avoiding the technical and ethical issues associated with embryonic stem cells."



Ding, who is an assistant professor in the chemistry department at Scripps Research conducted the study--to be published in an upcoming issue of the Journal of the American Chemical Society--with Peter G. Schultz, Ph.D., who is a professor of chemistry and Scripps Family Chair of Scripps Research’s Skaggs Institute of Chemical Biology, and their colleagues.

Regenerative Medicine and Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types--potentially providing doctors with the ability to produce cells that have been permanently lost by a patient.

For instance, the damage of neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. Another example of a potential medical application is Type 1 diabetes, an autoimmune condition in which pancreatic islet cells are destroyed by the body’s immune system. Because stem cells have the power to differentiate into islet cells, stem cell therapy could potentially cure this chronic condition.

However bright this promise, many barriers must be overcome before stem cells can be used in medicine. Stem cell therapy would be most effective if you could use your own stem cells, since using one’s own cells would avoid potential complications from immune rejection of foreign cells. However, in general it has proven very difficult to isolate and propagate stem cells from adults. Embryonic stem cells (ESCs) offer an alternative, but face both practical and ethical hurdles associated with the source of cells as well as methods for controlling the differentiation of ESCs. A third approach is to use one’s own specialized cells and dedifferentiate them.

Normally, cells develop along a pathway of increasing specialization. Muscles, for instance, develop after embryonic stem cells develop into "mesenchymal" progenitor cells, which then develop into "myogenic" cells. These muscle cells fuse and form the fibrous bundles we know as muscles.

In humans and other mammals, these developmental events are irreversible, and in this sense, cell development resembles a family tree. One wouldn’t expect a muscle cell to develop into a progenitor cell any more than one would expect a woman to give birth to her own mother.

However, such phenomena do happen in nature from time to time.

Some amphibians have the ability to regenerate body parts that are severed by using dedifferentiation. When the unlucky amphibian loses a limb or its tail, the cells at the site of the wound will undergo dedifferentiation and form progenitor cells, which will then multiply and redifferentiate into specialized cells as they form an identical replacement to the missing limb or tail. In humans, the liver is unique in its regenerative capacity, possibly also involving dedifferentiation mechanism.

The Scripps Research scientists hope to find ways of mimicking this natural regeneration by finding chemicals that will allow them to develop efficient dedifferentiation processes whereby healthy, abundant, and easily accessible adult cells could be used to generate stem-like precursor cells, from which they could make different types of functional cells for repair of damaged tissues. Reversine is one of the first steps in this process.

However, tissue regeneration is years away at best, and at the moment, Schultz and Ding are still working on understanding the exact biochemical mechanism whereby reversine causes the muscle cells to dedifferentiate into their progenitors, as well as attempting to improve the efficiency of the process. "This [type of research] may ultimately facilitate development of small molecule therapeutics for stimulating the body’s own regeneration," says Ding. "They are the future regenerative medicine."


The article, "Dedifferentiation of Lineage-Committed Cells by a Small Molecule" is authored by Shuibing Chen, Qisheng Zhang, Xu Wu, Peter G. Schultz, and Sheng Ding and is available to online subscribers of the Journal of the American Chemical Society at: http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/html/ja037390k.html. The article will also be published in an upcoming issue of JACS.

This work was supported by The Skaggs Institute for Research and the Novartis Research Foundation.

Jason Bardi | EurekAlert!
Further information:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/html/ja037390k.html
http://www.scripps.edu/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>