Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Regenerative chemical turns muscle cells into stem cells

23.12.2003


A group of researchers from The Scripps Research Institute has identified a small synthetic molecule that can induce a cell to undergo dedifferentiation - to move backwards developmentally from its current state to form its own precursor cell.


This compound, named reversine, causes cells which are normally programmed to form muscles to undergo reverse differentiation - retreat along their differentiation pathway and turn into precursor cells.

These precursor cells are multipotent; that is, they have the potential to become different cell types. Thus, reversine represents a potentially useful tool for generating unlimited supply of such precursors, which subsequently can be converted to other cell types, such as bone or cartilage.

"This [type of approach] has the potential to make stem cell research more practical," says Sheng Ding, Ph.D. "This will allow you to derive stem-like cells from your own mature cells, avoiding the technical and ethical issues associated with embryonic stem cells."



Ding, who is an assistant professor in the chemistry department at Scripps Research conducted the study--to be published in an upcoming issue of the Journal of the American Chemical Society--with Peter G. Schultz, Ph.D., who is a professor of chemistry and Scripps Family Chair of Scripps Research’s Skaggs Institute of Chemical Biology, and their colleagues.

Regenerative Medicine and Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types--potentially providing doctors with the ability to produce cells that have been permanently lost by a patient.

For instance, the damage of neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. Another example of a potential medical application is Type 1 diabetes, an autoimmune condition in which pancreatic islet cells are destroyed by the body’s immune system. Because stem cells have the power to differentiate into islet cells, stem cell therapy could potentially cure this chronic condition.

However bright this promise, many barriers must be overcome before stem cells can be used in medicine. Stem cell therapy would be most effective if you could use your own stem cells, since using one’s own cells would avoid potential complications from immune rejection of foreign cells. However, in general it has proven very difficult to isolate and propagate stem cells from adults. Embryonic stem cells (ESCs) offer an alternative, but face both practical and ethical hurdles associated with the source of cells as well as methods for controlling the differentiation of ESCs. A third approach is to use one’s own specialized cells and dedifferentiate them.

Normally, cells develop along a pathway of increasing specialization. Muscles, for instance, develop after embryonic stem cells develop into "mesenchymal" progenitor cells, which then develop into "myogenic" cells. These muscle cells fuse and form the fibrous bundles we know as muscles.

In humans and other mammals, these developmental events are irreversible, and in this sense, cell development resembles a family tree. One wouldn’t expect a muscle cell to develop into a progenitor cell any more than one would expect a woman to give birth to her own mother.

However, such phenomena do happen in nature from time to time.

Some amphibians have the ability to regenerate body parts that are severed by using dedifferentiation. When the unlucky amphibian loses a limb or its tail, the cells at the site of the wound will undergo dedifferentiation and form progenitor cells, which will then multiply and redifferentiate into specialized cells as they form an identical replacement to the missing limb or tail. In humans, the liver is unique in its regenerative capacity, possibly also involving dedifferentiation mechanism.

The Scripps Research scientists hope to find ways of mimicking this natural regeneration by finding chemicals that will allow them to develop efficient dedifferentiation processes whereby healthy, abundant, and easily accessible adult cells could be used to generate stem-like precursor cells, from which they could make different types of functional cells for repair of damaged tissues. Reversine is one of the first steps in this process.

However, tissue regeneration is years away at best, and at the moment, Schultz and Ding are still working on understanding the exact biochemical mechanism whereby reversine causes the muscle cells to dedifferentiate into their progenitors, as well as attempting to improve the efficiency of the process. "This [type of research] may ultimately facilitate development of small molecule therapeutics for stimulating the body’s own regeneration," says Ding. "They are the future regenerative medicine."


The article, "Dedifferentiation of Lineage-Committed Cells by a Small Molecule" is authored by Shuibing Chen, Qisheng Zhang, Xu Wu, Peter G. Schultz, and Sheng Ding and is available to online subscribers of the Journal of the American Chemical Society at: http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/html/ja037390k.html. The article will also be published in an upcoming issue of JACS.

This work was supported by The Skaggs Institute for Research and the Novartis Research Foundation.

Jason Bardi | EurekAlert!
Further information:
http://pubs.acs.org/cgi-bin/asap.cgi/jacsat/asap/html/ja037390k.html
http://www.scripps.edu/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>