Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Texas A&M scientists clone world’s first deer

23.12.2003


In what is believed to be the first success of its kind, researchers at the College of Veterinary Medicine at Texas A&M University have cloned a white-tailed deer. A fawn, named "Dewey," after Duane Kraemer, one of the researchers, was born to a surrogate mother several months ago.


Dewey, the world’s first deer clone was born May 23, 2003
Photo Credit: Courtesy of the College of Veterinary Medicine, Texas A&M University



The fawn is believed to be the first successfully cloned deer and Texas A&M is the first academic institution in the world to have cloned five different species. Previously, researchers at the College of Veterinary Medicine have cloned cattle, goats, pigs and a cat.

The announcement of the successful deer cloning was delayed until DNA analysis could be performed to confirm genetic identity. This breakthrough in deer cloning at the College of Veterinary Medicine was a joint project with Viagen, Inc. and may be useful in conserving endangered deer species including the Key West deer of Florida, researchers say.


"Dewey is developing normally for a fawn his age and appears healthy," said Dr. Mark Westhusin, who holds a joint appointment with the Colleges of Veterinary Medicine and Agriculture and Life Sciences and is the lead investigator on the project.

"A DNA analysis confirmed that Dewey is a clone, i.e. a genetic copy of the donor," adding that "future scientific advances resulting from the successful cloning of the deer are expected."

The clone was produced using fibroblast cells which were isolated from skin samples derived from a deceased white-tailed buck, expanded in culture then frozen and stored in liquid nitrogen. White-tailed deer oocytes were collected from ovaries of does and matured in vitro.

Two teams of research scientists led by Westhusin and Dr. Duane (Dewey) Kraemer of Texas A&M University and Dr. Charles Long of Viagen Inc. performed the nuclear transfer procedures and transfer of the cloned embryos. Dewey is under the medical care of Dr. Alice Blue-McClendon, a veterinarian at the College of Veterinary Medicine.

"With each new species cloned, we learn more about how this technology might be applied to improving the health of animals and humans," said Westhusin.

In December 2001, the first cloned cat was born at the College of Veterinary Medicine. Other cloned animals born at the university include several litters of pigs, a Boer goat, a disease-resistant Angus bull, and the first Brahma bull.

"The knowledge we gain from cloning these animals could greatly affect several areas of science and medicine," said H. Richard Adams, dean of the College of Veterinary Medicine. "With each successful cloned species, we learn more about cloning procedures and how to make the process more efficient."

White-tailed deer represent the most abundant, wide-spread big game animal in North America. They are popular game animals and are prized for their meat and antlers. Deer farming to produce meat and antlers is common in many parts of the world, including Texas. When breeding animals die or are harvested as a result of hunting, cloning may provide a valuable tool for conserving the genetics of superior animals.


Established in 1916, the College of Veterinary Medicine at Texas A&M is one of the world’s largest veterinary colleges and is an international leader in animal health care and research.

Sherylon Carroll | Texas A&M University
Further information:
http://www.cvm.tamu.edu/news/releases/releases.shtml

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>