Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling the genes that make stem cells

22.12.2003


While the controversy surrounding the ethics of stem cell research shows no signs of abating, scientists continue to demonstrate the promise of stem cell–derived therapies for a wide range of degenerative diseases. The hope is that stem cells, which retain a unique "pluripotent" ability to morph into any of the 200 cell types of the human body, could be used to repair or replace damaged or diseased tissue. However, little is known about the molecular events that trigger this differentiation of stem cells. In this issue of PLoS Biology, Minoru Ko and colleagues present a model that takes a first step towards characterizing the molecular profile of stem cells, based on a comprehensive database of genes expressed in mouse early embryos and stem cells.



Arguing that a broad understanding of these molecular determinants requires a broad selection of cell types, the scientists combined new gene expression data on early embryos and stem cells with existing gene expression data to compare transcription patterns across a wide range of cell types and developmental stages. The expanded mouse transcriptome (record of transcribed genes) included data on unfertilized eggs; "totipotent" fertilized eggs, which have the potential to become any cell; pluripotent embryonic cells; various embryonic and adult stem cells; and fully differentiated cells.

Because they examined tissues that had not previously been included in studies of expressed sequences, Ko et al were able to find 1,000 new gene candidates, which they grouped according to particular embryonic stage and stem cell type. From these signature gene sets, they identified a cluster of 88 genes which may serve as molecular markers of developmental potential.


These results are consistent with previous findings that cells gradually lose developmental potential and that adult stem cells retain plasticity, but more importantly they link signature genes with different stem cell types and stages--thus providing a preliminary set of molecular markers for characterizing the function and potential of different stem cells. Identifying the genes that shape the unique properties of stem cells will shed light on the molecular pathways that guide development and suggest ways to best exploit the full therapeutic potential of these embattled cells.


All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Minoru S.H. Ko
National Institute on Aging
Baltimore, Maryland
United States of America
phone +1-410-558-8359
kom@grc.nia.nih.gov

Barbara Cohen | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>