Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling the genes that make stem cells

22.12.2003


While the controversy surrounding the ethics of stem cell research shows no signs of abating, scientists continue to demonstrate the promise of stem cell–derived therapies for a wide range of degenerative diseases. The hope is that stem cells, which retain a unique "pluripotent" ability to morph into any of the 200 cell types of the human body, could be used to repair or replace damaged or diseased tissue. However, little is known about the molecular events that trigger this differentiation of stem cells. In this issue of PLoS Biology, Minoru Ko and colleagues present a model that takes a first step towards characterizing the molecular profile of stem cells, based on a comprehensive database of genes expressed in mouse early embryos and stem cells.



Arguing that a broad understanding of these molecular determinants requires a broad selection of cell types, the scientists combined new gene expression data on early embryos and stem cells with existing gene expression data to compare transcription patterns across a wide range of cell types and developmental stages. The expanded mouse transcriptome (record of transcribed genes) included data on unfertilized eggs; "totipotent" fertilized eggs, which have the potential to become any cell; pluripotent embryonic cells; various embryonic and adult stem cells; and fully differentiated cells.

Because they examined tissues that had not previously been included in studies of expressed sequences, Ko et al were able to find 1,000 new gene candidates, which they grouped according to particular embryonic stage and stem cell type. From these signature gene sets, they identified a cluster of 88 genes which may serve as molecular markers of developmental potential.


These results are consistent with previous findings that cells gradually lose developmental potential and that adult stem cells retain plasticity, but more importantly they link signature genes with different stem cell types and stages--thus providing a preliminary set of molecular markers for characterizing the function and potential of different stem cells. Identifying the genes that shape the unique properties of stem cells will shed light on the molecular pathways that guide development and suggest ways to best exploit the full therapeutic potential of these embattled cells.


All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Minoru S.H. Ko
National Institute on Aging
Baltimore, Maryland
United States of America
phone +1-410-558-8359
kom@grc.nia.nih.gov

Barbara Cohen | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>