Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Profiling the genes that make stem cells

22.12.2003


While the controversy surrounding the ethics of stem cell research shows no signs of abating, scientists continue to demonstrate the promise of stem cell–derived therapies for a wide range of degenerative diseases. The hope is that stem cells, which retain a unique "pluripotent" ability to morph into any of the 200 cell types of the human body, could be used to repair or replace damaged or diseased tissue. However, little is known about the molecular events that trigger this differentiation of stem cells. In this issue of PLoS Biology, Minoru Ko and colleagues present a model that takes a first step towards characterizing the molecular profile of stem cells, based on a comprehensive database of genes expressed in mouse early embryos and stem cells.



Arguing that a broad understanding of these molecular determinants requires a broad selection of cell types, the scientists combined new gene expression data on early embryos and stem cells with existing gene expression data to compare transcription patterns across a wide range of cell types and developmental stages. The expanded mouse transcriptome (record of transcribed genes) included data on unfertilized eggs; "totipotent" fertilized eggs, which have the potential to become any cell; pluripotent embryonic cells; various embryonic and adult stem cells; and fully differentiated cells.

Because they examined tissues that had not previously been included in studies of expressed sequences, Ko et al were able to find 1,000 new gene candidates, which they grouped according to particular embryonic stage and stem cell type. From these signature gene sets, they identified a cluster of 88 genes which may serve as molecular markers of developmental potential.


These results are consistent with previous findings that cells gradually lose developmental potential and that adult stem cells retain plasticity, but more importantly they link signature genes with different stem cell types and stages--thus providing a preliminary set of molecular markers for characterizing the function and potential of different stem cells. Identifying the genes that shape the unique properties of stem cells will shed light on the molecular pathways that guide development and suggest ways to best exploit the full therapeutic potential of these embattled cells.


All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Minoru S.H. Ko
National Institute on Aging
Baltimore, Maryland
United States of America
phone +1-410-558-8359
kom@grc.nia.nih.gov

Barbara Cohen | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>