Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of a Nobel-prize winning molecule: Aquaporin

22.12.2003


This year, Roderick MacKinnon was recognized for working out the atomic structure of an ion channel and Peter Agre for discovering that a major protein found in red blood cells functions primarily as a water channel. Agre went on to establish the family of related channels, which he named "aquaporins." Solving the structure of these channels provided a platform for exploring the underlying molecular mechanisms that allow the proteins to function as filters and maintain osmotic equilibrium. Robert Stroud and colleagues, as reported in this issue of PLoS Biology, have now solved the structure of the water channel from Escherichia coli called aquaporin Z. This channel is especially interesting in that it selectively conducts only water at high rates.



Aquaporins form a large, diverse family of proteins and have been found in bacteria, plants, and animals. Less than a decade ago, scientists discovered the aquaporin Z gene (aqpZ) in E. coli, pointing to the protein’s role in regulating water transport in this prokaryote. The aquaporin Z channel protein in E. coli can accommodate a flow of water at rates six times higher than GlpF (aquaglyceroporin glycerol facilitator, a channel protein that transports both glycerol and water in E. coli) making it the prime subject for studying the selectivity of a high-conducting water channel. And because the two main classes of aquaporins occur in E. coli--which means they’re exposed to the same cellular environment--the opportunities for comparative structural and functional analyses, combined with site-directed mutagenesis, promise to provide valuable insights into the molecular underpinnings of the selectivity of functionally different aquaporins.

After producing a recombinant form of AqpZ in E. coli, the proteins were crystallized--capturing five water molecules inside--and then analyzed by state-of-the-art high-resolution X-ray diffraction techniques. The architecture of aquaporin Z is typical of aquaporins, with a spiral of eight oxygens providing water-binding sites inside the channel. The outer membrane and cytoplasmic ends of the channel are wider than the interior, which is long and narrow. This structure demonstrates that aquaporin selectivity arises in part from erecting a physical barrier: small molecules, like water, can easily pass, but larger ones simply can’t fit. And the strategic positioning of amino acid residues with hydrophilic or hydrophobic properties along the channel helps police the influx of molecules based on their affinity for water. While it seems two amino acid chains located in the middle of the channel also provide a water-friendly surface, Stroud et al. say they play a more intriguing role. Noting that the water molecules occupy the channel in single file, the scientists explain that such an orientation would normally facilitate the random flow of protons (or hydrogen ions), which would be lethal to the cell. This central amino acid pair, they say, restricts the behavior of water molecules in the center of the channel in such a way that prevents "proton jumping" yet keeps the water flowing. With two structural models of aquaporins down to the atomic level in the same species, scientists can now begin to investigate the molecular mechanisms that facilitate their selectivity. The importance of understanding these widely distributed channel proteins was underscored by the Nobel awards this year.



All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Robert Stroud
UCSF
San Francisco, CA
United States of America
phone + 1-415-476-4224
stroud@msg.ucsf.edu

Philip Bernstein | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>