Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Structure of a Nobel-prize winning molecule: Aquaporin

22.12.2003


This year, Roderick MacKinnon was recognized for working out the atomic structure of an ion channel and Peter Agre for discovering that a major protein found in red blood cells functions primarily as a water channel. Agre went on to establish the family of related channels, which he named "aquaporins." Solving the structure of these channels provided a platform for exploring the underlying molecular mechanisms that allow the proteins to function as filters and maintain osmotic equilibrium. Robert Stroud and colleagues, as reported in this issue of PLoS Biology, have now solved the structure of the water channel from Escherichia coli called aquaporin Z. This channel is especially interesting in that it selectively conducts only water at high rates.



Aquaporins form a large, diverse family of proteins and have been found in bacteria, plants, and animals. Less than a decade ago, scientists discovered the aquaporin Z gene (aqpZ) in E. coli, pointing to the protein’s role in regulating water transport in this prokaryote. The aquaporin Z channel protein in E. coli can accommodate a flow of water at rates six times higher than GlpF (aquaglyceroporin glycerol facilitator, a channel protein that transports both glycerol and water in E. coli) making it the prime subject for studying the selectivity of a high-conducting water channel. And because the two main classes of aquaporins occur in E. coli--which means they’re exposed to the same cellular environment--the opportunities for comparative structural and functional analyses, combined with site-directed mutagenesis, promise to provide valuable insights into the molecular underpinnings of the selectivity of functionally different aquaporins.

After producing a recombinant form of AqpZ in E. coli, the proteins were crystallized--capturing five water molecules inside--and then analyzed by state-of-the-art high-resolution X-ray diffraction techniques. The architecture of aquaporin Z is typical of aquaporins, with a spiral of eight oxygens providing water-binding sites inside the channel. The outer membrane and cytoplasmic ends of the channel are wider than the interior, which is long and narrow. This structure demonstrates that aquaporin selectivity arises in part from erecting a physical barrier: small molecules, like water, can easily pass, but larger ones simply can’t fit. And the strategic positioning of amino acid residues with hydrophilic or hydrophobic properties along the channel helps police the influx of molecules based on their affinity for water. While it seems two amino acid chains located in the middle of the channel also provide a water-friendly surface, Stroud et al. say they play a more intriguing role. Noting that the water molecules occupy the channel in single file, the scientists explain that such an orientation would normally facilitate the random flow of protons (or hydrogen ions), which would be lethal to the cell. This central amino acid pair, they say, restricts the behavior of water molecules in the center of the channel in such a way that prevents "proton jumping" yet keeps the water flowing. With two structural models of aquaporins down to the atomic level in the same species, scientists can now begin to investigate the molecular mechanisms that facilitate their selectivity. The importance of understanding these widely distributed channel proteins was underscored by the Nobel awards this year.



All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

CONTACT:
Robert Stroud
UCSF
San Francisco, CA
United States of America
phone + 1-415-476-4224
stroud@msg.ucsf.edu

Philip Bernstein | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>