Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aged roaches experience perils of stiff joints, find Case researchers

19.12.2003


Humans are not alone in suffering the ravages of aging. Cockroaches endure it, too.



Case Western Reserve University researchers reported in the Journal of Experimental Biology that as the roach’s life wanes between 60-65 weeks after the onset of adulthood, and the cockroach slows down, experiences stiff joints and has problems climbing and a decreased spontaneous fleeing response. Death comes shortly after the onset of these movement problems.

Angela Ridgel, a post doctoral fellow at Case, was the lead author on the National Institute of Health-funded study, "Effects of aging on behavior and leg kinematics during locomotion in two species of cockroaches." Her research looked at walking, climbing and righting behavior in the roach species, Blaberus discoidalis. She wrote the paper with Roy Ritzmann, professor of biology, and Paul Schaefer, a former Case graduate student who studied escape behavior in Periplaneta americana and contributed information about the roach’s central nervous system and escape behavior.


Research for the paper came from Ritzmann’s cockroach laboratory that studies insect movement to help engineer a new generation of robots that can not only move but sense information as they travel rugged terrains or locations unsafe for humans.

Roaches reach adulthood after several molts. After 60 weeks into adulthood, Ridgel observed in lab studies that roach movement was much different from their younger adult counterparts.

Aging is complicated for the six-legged roach. Ridgel found that old roaches develop a "tarsus catch" where the joint between its paw section and leg joint in the front (prothoracic) leg hardens causing the leg to list to almost 45 degrees. As the roach moves forward, the front leg catches on the middle (mesothoracic) leg, which causes the roach to trip and to struggle to regain its tripod-like stance and gait.

Ridgel noted that this catch increased from 35 percent of the 60-week-old adults to 95 percent for 65-week-old adult roaches.

Changes in the sticky pads that help roaches climb walls or on inclined surfaces also underwent a change from a supple, grey pad to hardened brown ones that eventually broke off. Removing a layer of cuticle in the roach paws, she also noted that tracheal tubes and a tendon that help create movement also hardened and browned, causing the paw to bend at the odd angle.

"Insects provide a useful model for aging studies because they’re short-lived compared with mammals," reports Ridgel.

Schaefer contributed to the paper with his look at the roach’s escape behavior and how it changes during the aging process. He also reported in the paper that roaches had lacked the spontaneous response to flee from a predator in lab studies, but this escape behavior returned after the roach’s head was removed, suggesting a deficiency in the brain.

She noted that the importance of this study is that it stresses the importance of multi-level approaches to the study of age-related changes in behavior and the nervous system.

"If we looked at only one study, we would have a skewed view of movement in these adult roaches. You need to test animals in a whole bunch of locomotor situations to get an idea of the potential changes that occur," added Ridgel.



About Case Western Reserve University

Founded in 1826 and shaped by the unique merger of an institute of technology and a liberal arts college, Case is distinguished by its strengths in education, research, and service. Located in Cleveland and offering top programs in the Arts and Sciences, Dentistry, Engineering, Law, Management, Medicine, Nursing, and Social Sciences, Case is among the world’s leading research institutions. http://www.case.edu.

Susan Griffith | EurekAlert!
Further information:
http://www.cwru.edu/
http://www.case.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>