Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Panning for gold’ in the maize genome

19.12.2003


New approaches yield gene-rich regions, accelerate sequencing



Decoding of a variety of plant genomes could accelerate due to two complementary methods that remove from analysis vast stretches of DNA that do not contain genes.

The approaches, applied jointly in efforts to determine the gene sequences in maize, are described in the Dec. 19 issue of the journal Science. The evaluation of these methods and the assembly of the resulting sequences were undertaken by two groups led by researchers from The Institute for Genomic Research (TIGR) in Rockville, Md., and Cold Spring Harbor Laboratory in New York.


The research was funded by the National Science Foundation’s Plant Genome Research Program.

Only about a quarter of the maize genome codes for genes, and these are found in small clusters scattered through a mixture of non-coding DNA and transposons (mobile DNA segments). Two different methods tested by the TIGR group successfully captured parts of the maize genome containing genes. The gene-sequences are of most interest because they provide the specific blueprint for an organism’s development, structure and physiology.

With so much non-gene sequence to deal with, it has not been feasible to sequence and assemble the whole maize genome with current technologies. Thus, it is a major shortcut to capture only the portion of the maize sequence containing its genes without having to sequence the entire genome.

"Collecting the maize genes for sequencing is like panning for gold," said Jane Silverthorne, program director for NSF’s plant genome program. "Just as gold can be separated from the surrounding rock because it is denser, maize genes can be separated from the surrounding DNA by their chemical and sequence properties."

The first method tested, called methylation filtration, removes sequences that contain a chemical modification (methylation) found on most of the repeated sequences and transposons, leaving behind the proverbial gold of genes. It was developed by a team led by Robert Martienssen and W. Richard McCombie at Cold Spring Harbor Laboratory.

The second method, developed by researchers at the University of Georgia, removes the repeated sequences by separating the DNA into "high-copy," gene-poor segments and "low-copy," gene-rich segments.

Led by Cathy Whitelaw, the research team at TIGR compared sequences obtained by the two methods. About one fourth of the genes in each collection matched known gene sequences. About 35 percent of the genes were represented in both collections.

Each method was found to enrich for distinct but complementary regions of maize’s 10-chromosome genome. Combined, the methods could cut the amount of sequencing necessary to find all of the maize genes to about one-fourth of what it would take to sequence the entire genome.

As both methods yielded short stretches of sequence, a major challenge was to reassemble these into complete genes. To do this, the Cold Spring Harbor group lined up the sequence pieces from maize along the rice genome sequence, a deep draft of which was completed in 2002 by an international consortium. The researchers then reassembled selected sets of sequence fragments into complete genes. This approach will be an important part of assembling the short pieces of DNA yielded by the two enrichments methods into complete gene clusters.

According to Silverthorne, "Together, these findings suggest that scientists could be able to sift out the approximately 450 million base pairs of DNA containing the genes from the maize genome and then reassemble the sequence. Such a comprehensive genomic resource would provide growers and breeders a wealth of tools to improve maize, as well as other cereal crops."


Other collaborators in the study included the Donald Danforth Plant Science Center and Orion Genomics, both of St. Louis, Mo.

Sean Kearns | NSF
Further information:
http://nsf.gov/bio/pubs/awards/genome03.htm
http://www.nsf.gov/od/lpa/news/03/pr03114_priors.htm
http://www.nsf.gov/bio/dbi/dbi_pgr.htm

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>