Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA analysis for chimpanzees and humans reveals striking differences in genes for smell, metabolism and hearing

19.12.2003


Nearly 99 percent alike in genetic makeup, chimpanzees and humans might be even more similar were it not for what researchers call "lifestyle" changes in the 6 million years that separate us from a common ancestor. Specifically, two key differences are how humans and chimps perceive smells and what we eat.



A massive gene-comparison project involving two Cornell University scientists, and reported in the latest issue of the journal Science (Dec. 12, 2003), found these and many other differences in a search for evidence of accelerated evolution and positive selection in the genetic history of humans and chimps.

In the most comprehensive comparison to date of the genetic differences between two primates, the genomic analysts found evidence of positive selection in genes involved in olfaction, or the ability to sense and process information about odors. "Human and chimpanzee sequences are so similar, we were not sure that this kind of analysis would be informative," says evolutionary geneticist Andrew G. Clark, Cornell professor of molecular biology and genetics. "But we found hundreds of genes showing a pattern of sequence change consistent with adaptive evolution occurring in human ancestors." Those genes are involved in the sense of smell, in digestion, in long-bone growth, in hairiness and in hearing. "It is a treasure-trove of ideas to test by more careful comparison of human and chimpanzee development and physiology," Clark says.


The DNA sequencing of the chimpanzee was performed by Celera Genomics, in Rockville, Md., as part of a larger study of human variation headed by company researchers Michele Cargill and Mark Adams.

Celera generated some 18 million DNA sequence "reads," or about two-thirds as many as were required for the first sequencing of the human genome. Statistical modeling and computation was done by Clark and by Rasmus Nielsen, a Cornell assistant professor of biological statistics and computational biology. Some of the analysis, which also compared the mouse genome, used the supercomputer cluster at the Cornell Theory Center. Clark explains, "By lining up the human and chimpanzee gene sequences with those of the mouse, we thought we might be able to find genes that are evolving especially quickly in humans. In a sense, this method asks: What are the genes that make us human? Or rather, what genes were selected by natural selection to result in differences between humans and chimps?" The study started with almost 23,000 genes, but this number fell to 7,645 because of the need to be sure that the right human, chimp and mouse genes were aligned.

According to Clark, all mammals have an extensive repertoire of olfactory receptors, genes that allow specific recognition of the smell of different substances. "The signature of positive selection is very strong in both humans and chimps for tuning the sense of smell, probably because of its importance in finding food and perhaps mates," says Clark. In addition to the great departure in smell perception, differences in amino acid metabolism also seem to affect chimps’ and humans’ abilities to digest dietary protein and could date back to the time when early humans began eating more meat, Clark speculates. Anthropologists believe that this occurred around 2 million years ago, in concert with a major climate change.

"This study also gives tantalizing clues to an even more complex difference -- the ability to speak and understand language," Clark says. "Perhaps some of the genes that enable humans to understand speech work not only in the brain, but also are involved in hearing." Evidence for this came from a particularly strong sign of selection acting on the gene that codes for an obscure protein in the tectorial membrane of the inner ear. One form of congenital deafness in humans is caused by mutations to this gene, called alpha tectorin.

Mutations in alpha tectorin result in poor frequency response of the ear, making it hard to understand speech. "It’s something like replacing the soundboard of a Stradivarius violin with a piece of plywood," Clark notes. The large divergence between humans and chimps in alpha tectorin, he says, could imply that humans needed to tune the protein for specific attributes of their sense of hearing. This leads Clark to wonder whether one of the difficulties in training chimpanzees to understand human speech is that their hearing is not quite up to the task. Although studies of chimpanzee hearing have been done, detailed tests of their transient response have not been carried out.

Clark emphasizes that a study like this cannot prove that the biology of humans and chimps differ because of this or that particular gene. "But it generates many hypotheses that can be tested to yield insight into exactly why only 1 percent in DNA sequence difference makes us such different beasts," he says.

Also collaborating in the study were researchers at Applied Biosystems (Foster City, Calif.), Celera Diagnostics (Alameda, Calif.) and Case Western Reserve University in Cleveland. The Science report is titled, "Inferring non-neutral evolution from human-chimp-mouse orthologous gene trios."

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec03/chimp.life.hrs.html

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>