Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA analysis for chimpanzees and humans reveals striking differences in genes for smell, metabolism and hearing

19.12.2003


Nearly 99 percent alike in genetic makeup, chimpanzees and humans might be even more similar were it not for what researchers call "lifestyle" changes in the 6 million years that separate us from a common ancestor. Specifically, two key differences are how humans and chimps perceive smells and what we eat.



A massive gene-comparison project involving two Cornell University scientists, and reported in the latest issue of the journal Science (Dec. 12, 2003), found these and many other differences in a search for evidence of accelerated evolution and positive selection in the genetic history of humans and chimps.

In the most comprehensive comparison to date of the genetic differences between two primates, the genomic analysts found evidence of positive selection in genes involved in olfaction, or the ability to sense and process information about odors. "Human and chimpanzee sequences are so similar, we were not sure that this kind of analysis would be informative," says evolutionary geneticist Andrew G. Clark, Cornell professor of molecular biology and genetics. "But we found hundreds of genes showing a pattern of sequence change consistent with adaptive evolution occurring in human ancestors." Those genes are involved in the sense of smell, in digestion, in long-bone growth, in hairiness and in hearing. "It is a treasure-trove of ideas to test by more careful comparison of human and chimpanzee development and physiology," Clark says.


The DNA sequencing of the chimpanzee was performed by Celera Genomics, in Rockville, Md., as part of a larger study of human variation headed by company researchers Michele Cargill and Mark Adams.

Celera generated some 18 million DNA sequence "reads," or about two-thirds as many as were required for the first sequencing of the human genome. Statistical modeling and computation was done by Clark and by Rasmus Nielsen, a Cornell assistant professor of biological statistics and computational biology. Some of the analysis, which also compared the mouse genome, used the supercomputer cluster at the Cornell Theory Center. Clark explains, "By lining up the human and chimpanzee gene sequences with those of the mouse, we thought we might be able to find genes that are evolving especially quickly in humans. In a sense, this method asks: What are the genes that make us human? Or rather, what genes were selected by natural selection to result in differences between humans and chimps?" The study started with almost 23,000 genes, but this number fell to 7,645 because of the need to be sure that the right human, chimp and mouse genes were aligned.

According to Clark, all mammals have an extensive repertoire of olfactory receptors, genes that allow specific recognition of the smell of different substances. "The signature of positive selection is very strong in both humans and chimps for tuning the sense of smell, probably because of its importance in finding food and perhaps mates," says Clark. In addition to the great departure in smell perception, differences in amino acid metabolism also seem to affect chimps’ and humans’ abilities to digest dietary protein and could date back to the time when early humans began eating more meat, Clark speculates. Anthropologists believe that this occurred around 2 million years ago, in concert with a major climate change.

"This study also gives tantalizing clues to an even more complex difference -- the ability to speak and understand language," Clark says. "Perhaps some of the genes that enable humans to understand speech work not only in the brain, but also are involved in hearing." Evidence for this came from a particularly strong sign of selection acting on the gene that codes for an obscure protein in the tectorial membrane of the inner ear. One form of congenital deafness in humans is caused by mutations to this gene, called alpha tectorin.

Mutations in alpha tectorin result in poor frequency response of the ear, making it hard to understand speech. "It’s something like replacing the soundboard of a Stradivarius violin with a piece of plywood," Clark notes. The large divergence between humans and chimps in alpha tectorin, he says, could imply that humans needed to tune the protein for specific attributes of their sense of hearing. This leads Clark to wonder whether one of the difficulties in training chimpanzees to understand human speech is that their hearing is not quite up to the task. Although studies of chimpanzee hearing have been done, detailed tests of their transient response have not been carried out.

Clark emphasizes that a study like this cannot prove that the biology of humans and chimps differ because of this or that particular gene. "But it generates many hypotheses that can be tested to yield insight into exactly why only 1 percent in DNA sequence difference makes us such different beasts," he says.

Also collaborating in the study were researchers at Applied Biosystems (Foster City, Calif.), Celera Diagnostics (Alameda, Calif.) and Case Western Reserve University in Cleveland. The Science report is titled, "Inferring non-neutral evolution from human-chimp-mouse orthologous gene trios."

Roger Segelken | Cornell News
Further information:
http://www.news.cornell.edu/releases/Dec03/chimp.life.hrs.html

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>