Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yesterday, today and tomorrow: Mount Sinai researchers are making sense of episodic memory

18.12.2003


Many of our actions are guided by past experiences combined with insight into the future. A major mystery of biology involves understanding how brain cells can create a representation that extends backward and forward through time. A new study conducted by researchers at Mount Sinai School of Medicine published in the December 18th issue of Neuron begins to unravel the brain activity that underlies concurrent processing of the recent past, the present and the imminent future.



Memories that are organized by time and context are known as episodic memory. Dr. Matthew L. Shapiro, Associate Professor of Neurobiology at Mount Sinai School of Medicine and leader of the study offers the following example. "Imagine driving to work, parking your car, and taking an elevator to your office. During the day you may take the elevator several times without thinking of your car. Only when the end of the day arrives and you descend in the elevator to go home do you remember where your car is parked. In the present moment in the elevator, the past guides your future action." To examine the brain processes involved in such episodic memories, Drs. Shapiro and Ferbinteanu examined cellular activity within the brain while rats searched for food in a maze where the starting and ending point was varied.

The researchers examined activity in the hippocampus, a brain region that is key for memory. The hippocampus contains cells, called place cells, which become more active in response to a particular spatial location. "We found that the activity of the place cells showed something very interesting while the rats performed the task. Some cells signaled location alone but others were additionally sensitive to recent or impending events," explains Dr. Ferbinteanu. "These cells maintained spatial selectivity, but this activity depended upon where the animal had just been or where it intended to go." Therefore, the hippocampus can support episodic memory by creating patterns of cellular activity for events within a temporal context.


"The pattern of cell firing suggests a model of how the hippocampus helps form episodic memories," suggests Dr. Shapiro. "When you park your car, hippocampal neurons fire in a pattern that includes location. When the time has come to go home, the goal in the elevator is to find the car. This goal activates cells in the hippocampus that did not fire during prior trips in the elevator that day, but form a new pattern that perhaps includes the visual and verbal images that guide recollection and future action." Further studies are needed to determine how the brain activates and decodes the signals that simultaneously integrate the past, present, and future.

Debra Kaplan | EurekAlert!
Further information:
http://www.mountsinai.org/

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>