Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single gene plays key role in neural tube defects

16.12.2003


Birth of a neural tube: Development of a normal frog embryo showing formation of the neural tube – the hollow structure that will become the brain and spinal cord. Blocking a gene called "shroom" disrupts closure of the tube, mimicking neural tube defects like spina bifida in humans. (Credit: Saori Haigo, John Wallingford/UC Berkeley)


A single gene appears to kick off a critical step in the development of the early embryo - the formation of the brain and spinal cord - and thus may offer a way to screen for fetal spinal cord defects such as spina bifida.

Neural tube defects, including spina bifida - an open spinal cord - and anencephaly, or lack of a complete brain, are among the most common serious birth defects in the United States. While the incidence has gone down in this country thanks to educational efforts encouraging pregnant women to take folic acid supplements, some 30 percent of neural tube defects appear to have a genetic cause unrelated to folic acid deficiency.

Reporting in the December 16 issue of Current Biology, researchers at the University of California, Berkeley, and the University of Pittsburgh, establish that activation of a lone gene, called "shroom," triggers specific cells in the embryo to bend, initiating a curling of tissue into a closed neural tube that eventually becomes the spinal cord and brain. Though conducted in frog embryos, the experiments have implications for all vertebrates, including humans.



"These experiments show that, in the embryo, a single protein can bring about this cell shape change, which is staggering, because it implies that this entire bending event can be controlled essentially by controlling a single gene," said co-author John Wallingford, a former UC Berkeley postdoctoral fellow now an assistant professor in the Department of Molecular, Cell and Developmental Biology at the University of Texas at Austin. "It is absolutely a key step in the process."

"This finding contributes to an understanding of the genes that are collaborating in the whole process of spinal cord closure," said co-author Richard Harland, professor of molecular and cell biology at UC Berkeley. "There are both genetic and non-genetic contributors to neural tube defects, so we should certainly expect that there may be polymorphisms in this gene in the population that might lead to a susceptibility for spina bifida. Ultimately, one might be able to screen for susceptibility by looking at these genes."

In humans, the developing spinal cord closes after the fourth week of pregnancy, but problems occur in about seven to 15 of every 10,000 pregnancies. Studies in mice have turned up more than 50 genes involved in orchestrating this closure, which requires the proper rolling up of a flat sheet of tissue - the so-called neural plate - within the embryo. To achieve this, cells in the plate alter their shape, some of them lengthening, others constricting, still others pushing.

Despite the large number of genes known to be involved in proper neural tube closure, scientists know little or nothing about the normal function of these genes, largely because mice develop inside the mother’s uterus, where it’s impossible to watch the process of neural tube closure.

"There are a lot of mouse mutants and a lot of human occurrences that lead to failure to close the spinal cord completely," Harland said. "But people pretty much threw up their hands - the whole thing was too complicated to really understand."

Wallingford decided to look at spinal cord closure in a different animal, the African clawed frog, Xenopus laevis. The process of spinal cord closure is simpler in amphibians and much easier to observe in the laboratory, since the embryo develops outside the body in a dish of pond water, he said.

"By watching a dynamic process like neural tube closure as it’s happening - you take a sheet and roll it into a tube, that’s a very dynamic process - we gain tremendous insights," Wallingford said.

"In amphibians, there also is not a big contribution from cell division, so we can look at things like cell shape changes, which is the subject of this paper, whereas in the mouse or humans, there is an enormous amount of cell division that contributes to the process, so things are even more complicated in mammals," Harland added.

The gene Wallingford, Harland and UC Berkeley undergraduate student Saori L. Haigo decided to look at was shroom, short for mushroom, which is the shape of a cross section through a mouse brain that lacks the gene and has an everted rather than normally rolled neural tube. Co-author Jeffrey Hildebrand of the University of Pittsburgh had shown in mice that shroom is required for bending of cells in the hinge area of the embryo. During normal development, these cells express shroom, generating a protein that somehow makes the cells wedge-shaped and taller, causing the neural plate to curl. Other cells contribute, such as nearby skin or epidermal cells, which push and form the fold.

"One of the key things is apical constriction or wedging, and we know that because when we block shroom function, you get pretty much a complete failure - the neural tube stays wide open. It can’t get the job done despite these other motors," Wallingford said. "We have movies where you can look and see the epidermis pushing on the neural plate, and yet the plate is not bending.

"So we can’t say apical constriction is the whole story, but it is a very important aspect to it. Shroom is the first protein shown to induce apical constriction by itself."

To prove the importance of shroom, Wallingford injected shroom protein into very early frog embryos, before they would be expected to form a neural tube, and the as-yet undifferentiated cells promptly curled up into a tube. Similarly, Hildebrand in Pittsburgh injected the shroom protein into cultured dog kidney cells, which never become wedge-shaped, and they too underwent apical constriction.

Conversely, when Wallingford blocked the shroom gene in normal Xenopus embryos, they failed to develop normal rolled neural tubes.

"In two different kinds of naive cells we can cause apical constriction by adding shroom, and in neural plate cells, when we take shroom away, we’ve shown that the plate fails to roll into a tube - it fails to bend at the hinge points," Wallingford said.

"The triumph here is we marry this beautiful genetic experiment in the mouse that shows this gene is important and the beautiful cell biology in the frog that shows exactly why it’s important - what does it actually do."

The findings provide new avenues of research in both the Harland and Wallingford laboratories.

"We know this gene is a really central location, so by identifying things that regulate its expression, and things that function downstream of it, we can get a better picture of the hierarchy and expand the number of genes we know that are involved in neural tube closure," Wallingford said. "This gives us more candidates to look for in the human condition."

The work was supported by the National Institutes of Health, the Haas and McNair Scholars Program at UC Berkeley and the Burroughs Wellcome Fund.

Robert Sanders | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2003/12/15_neural.shtml

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>