Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Champagne and bubbles: Smaller is better


As New Year’s Eve approaches and you prepare to pop open that champagne bottle, keep your fingers crossed for small bubbles ... and lots of them.

That long train of tiny, rising bubbles is the key to the drink’s flavor and aroma, scientists say. And the smaller the bubbles, the better, according to the people who should know, researchers in the Champagne region of France, home to the famous vineyards that gave birth to the bubbly wine.

"Our ultimate goal is to create smaller bubbles in champagne wines," says Gérard Liger-Belair, Ph.D., an associate professor at the University of Reims Champagne-Ardenne in France, whose study on the subject will be published this week in the Dec. 17 issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

The reason smaller bubbles make better champagne is basically because there are more bubbles available to release the flavor and aroma.

The little bubbles pick up flavor and aroma molecules during their celebrated ascent, pulling them along until the bubbles literally explode onto the surface of the liquid, creating the sensory fireworks that are generally associated with a good tasting, refreshing champagne.

The scientific explanation of why smaller bubbles make better champagne gets a bit more involved. As Liger-Belair says, "We must first understand each and every parameter that could control bubble growth."

Crafting a better champagne bubble is no easy task. It involves a complex interplay of physics and chemistry to help create that bubble "magic," says the researcher, who is also a consultant with Möet & Chandon, a leading champagne manufacturer.

An excessive amount of carbon dioxide is the main factor responsible for bubble growth in carbonated beverages, whether produced naturally via fermentation or added artificially. But other factors also play a role in bubble formation, including the degree of diffusion of carbon dioxide within the liquid.

In order to test the extent to which diffusion influences bubble formation, Liger-Belair measured carbon dioxide concentrations inside equal quantities of five different beverages: champagne, sparkling wine, beer, soda and carbonated water. To his surprise, he found that even though champagne and its close relative, sparkling wine, had about the same diffusion measurement for carbon dioxide, their bubble sizes were significantly different.

Liger-Belair’s conclusion: Contrary to expectations, the diffusion of the carbon dioxide was not the main factor determining bubble size in champagne, although it did play a major role in the formation of bubbles in the other beverages he examined.

Based on his study, Liger-Belair says that other chemical components that are dispersed throughout champagne, including dissolved salts, carbohydrates, and minerals, play a bigger role than previously believed in the formation of its uniquely small bubbles.

The researcher hopes to use this finding, combined with future studies, to develop a more comprehensive computer model of the factors that determine champagne bubble formation in order to create the perfect little bubble.

No doubt, Don Ho would approve.

Funding for this study was provided by the Europol’Agro Institute and the Association Recherche Oenologie Champagne Universite.

Allison Byrum | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>