Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Champagne and bubbles: Smaller is better


As New Year’s Eve approaches and you prepare to pop open that champagne bottle, keep your fingers crossed for small bubbles ... and lots of them.

That long train of tiny, rising bubbles is the key to the drink’s flavor and aroma, scientists say. And the smaller the bubbles, the better, according to the people who should know, researchers in the Champagne region of France, home to the famous vineyards that gave birth to the bubbly wine.

"Our ultimate goal is to create smaller bubbles in champagne wines," says Gérard Liger-Belair, Ph.D., an associate professor at the University of Reims Champagne-Ardenne in France, whose study on the subject will be published this week in the Dec. 17 issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.

The reason smaller bubbles make better champagne is basically because there are more bubbles available to release the flavor and aroma.

The little bubbles pick up flavor and aroma molecules during their celebrated ascent, pulling them along until the bubbles literally explode onto the surface of the liquid, creating the sensory fireworks that are generally associated with a good tasting, refreshing champagne.

The scientific explanation of why smaller bubbles make better champagne gets a bit more involved. As Liger-Belair says, "We must first understand each and every parameter that could control bubble growth."

Crafting a better champagne bubble is no easy task. It involves a complex interplay of physics and chemistry to help create that bubble "magic," says the researcher, who is also a consultant with Möet & Chandon, a leading champagne manufacturer.

An excessive amount of carbon dioxide is the main factor responsible for bubble growth in carbonated beverages, whether produced naturally via fermentation or added artificially. But other factors also play a role in bubble formation, including the degree of diffusion of carbon dioxide within the liquid.

In order to test the extent to which diffusion influences bubble formation, Liger-Belair measured carbon dioxide concentrations inside equal quantities of five different beverages: champagne, sparkling wine, beer, soda and carbonated water. To his surprise, he found that even though champagne and its close relative, sparkling wine, had about the same diffusion measurement for carbon dioxide, their bubble sizes were significantly different.

Liger-Belair’s conclusion: Contrary to expectations, the diffusion of the carbon dioxide was not the main factor determining bubble size in champagne, although it did play a major role in the formation of bubbles in the other beverages he examined.

Based on his study, Liger-Belair says that other chemical components that are dispersed throughout champagne, including dissolved salts, carbohydrates, and minerals, play a bigger role than previously believed in the formation of its uniquely small bubbles.

The researcher hopes to use this finding, combined with future studies, to develop a more comprehensive computer model of the factors that determine champagne bubble formation in order to create the perfect little bubble.

No doubt, Don Ho would approve.

Funding for this study was provided by the Europol’Agro Institute and the Association Recherche Oenologie Champagne Universite.

Allison Byrum | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>