Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Champagne and bubbles: Smaller is better

16.12.2003


As New Year’s Eve approaches and you prepare to pop open that champagne bottle, keep your fingers crossed for small bubbles ... and lots of them.



That long train of tiny, rising bubbles is the key to the drink’s flavor and aroma, scientists say. And the smaller the bubbles, the better, according to the people who should know, researchers in the Champagne region of France, home to the famous vineyards that gave birth to the bubbly wine.

"Our ultimate goal is to create smaller bubbles in champagne wines," says Gérard Liger-Belair, Ph.D., an associate professor at the University of Reims Champagne-Ardenne in France, whose study on the subject will be published this week in the Dec. 17 issue of the Journal of Agricultural and Food Chemistry, a peer-reviewed publication of the American Chemical Society, the world’s largest scientific society.


The reason smaller bubbles make better champagne is basically because there are more bubbles available to release the flavor and aroma.

The little bubbles pick up flavor and aroma molecules during their celebrated ascent, pulling them along until the bubbles literally explode onto the surface of the liquid, creating the sensory fireworks that are generally associated with a good tasting, refreshing champagne.

The scientific explanation of why smaller bubbles make better champagne gets a bit more involved. As Liger-Belair says, "We must first understand each and every parameter that could control bubble growth."

Crafting a better champagne bubble is no easy task. It involves a complex interplay of physics and chemistry to help create that bubble "magic," says the researcher, who is also a consultant with Möet & Chandon, a leading champagne manufacturer.

An excessive amount of carbon dioxide is the main factor responsible for bubble growth in carbonated beverages, whether produced naturally via fermentation or added artificially. But other factors also play a role in bubble formation, including the degree of diffusion of carbon dioxide within the liquid.

In order to test the extent to which diffusion influences bubble formation, Liger-Belair measured carbon dioxide concentrations inside equal quantities of five different beverages: champagne, sparkling wine, beer, soda and carbonated water. To his surprise, he found that even though champagne and its close relative, sparkling wine, had about the same diffusion measurement for carbon dioxide, their bubble sizes were significantly different.

Liger-Belair’s conclusion: Contrary to expectations, the diffusion of the carbon dioxide was not the main factor determining bubble size in champagne, although it did play a major role in the formation of bubbles in the other beverages he examined.

Based on his study, Liger-Belair says that other chemical components that are dispersed throughout champagne, including dissolved salts, carbohydrates, and minerals, play a bigger role than previously believed in the formation of its uniquely small bubbles.

The researcher hopes to use this finding, combined with future studies, to develop a more comprehensive computer model of the factors that determine champagne bubble formation in order to create the perfect little bubble.

No doubt, Don Ho would approve.


Funding for this study was provided by the Europol’Agro Institute and the Association Recherche Oenologie Champagne Universite.

Allison Byrum | EurekAlert!
Further information:
http://www.acs.org/

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>