Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene interactions control circadian clock in plants, study finds

16.12.2003


David Somers


New research identifies the molecular mechanisms that keep a plant’s circadian clock running on a 24-hour schedule.

The study, reported this week in the journal Nature, is the first to describe the physical connection between two molecular components -– genes called TOC1 and ZTL -- that keep a plant’s “clock” running at the right speed. Scientists have spent more than a decade trying to understand the interactions between the components that regulate a plant’s timing.

Knowing how those components interact might benefit agriculture, as the clock controls activities like flowering time in plants, said David Somers, a study co-author and an assistant professor of plant biology at Ohio State University.



"Understanding how the clock works on the molecular level means that we can begin to understand, and perhaps manipulate, when a plant flowers," he said. "One potential limitation to where plants can grow is day length – some plants need more exposure to light than do others.

"If we could make a plant flower earlier in the growing season – assuming that temperatures were warm enough – we could possibly extend that plant’s range into a region in which it normally had difficulty growing."

Somers conducted the study with Woe-Yoon Kim, a postdoctoral researcher in plant biotechnology at Ohio State, and Paloma Más and Steve Kay, both with the Scripps Research Institute in La Jolla, Calif.

The researchers conducted experiments on Arabidopsis thaliana, or thale cress plants. They looked at plants with normal TOC1 and ZTL genes and also at Arabidopsis plants with either a mutant TOC1 or ZTL gene. Observing changes in mutant strains gave the researchers information on each gene’s involvement in regulating the circadian clock.

"We wanted to know what keeps a plant’s circadian clock running at the right speed," Somers said.

A faulty TOC1 gene caused the plants to run on a faster schedule – their circadian clocks had sped up to 20 hours. Conversely, mutations in the ZTL gene slowed the clock down to 27 hours. If both genes were missing entirely, the clock still ran, but at the wrong speed.

The researchers also looked for, and found, a strong physical interaction between TOC1 and ZTL.

"It became clear that ZTL is heavily involved in controlling the level of TOC1 in the plants," Somers said. "ZTL degrades TOC1, and this degradation is vital for normal plant functioning.

"We knew that TOC1 was one of the main components in controlling the clock’s pace," he continued. "Now we know that ZTL indirectly controls the clock’s pace through its effect on TOC1 degradation."

These findings help shed light on mechanisms that have puzzled scientists for years.

"The molecular components of the plant clock aren’t well understood," Somers said. "And, unlike the mammalian circadian clock, a lot of the individual players are still unidentified."

Just as in animals, plants’ circadian clocks are set by light and dark cycles, Somers said. In humans, feeling sleepy close to bedtime is controlled in part by the clock. In plants, the circadian clock controls the production of enzymes and other components involved in photosynthesis.

"If a plant can anticipate sunrise, it can have the necessary photosynthetic compounds prepared in advance," said Somers. "Many of the enzymes and molecular components of photosynthesis have to be re-made daily, as harvesting sunlight and turning it into useful energy is a destructive process.

"It’s to a plant’s advantage to be ready to absorb sunlight when it becomes available."

The study was funded by grants from the National Institutes of Health and the National Science Foundation.


Contact: David Somers, (614) 292-2551; Somers.24@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/circlock.htm

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>