Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene interactions control circadian clock in plants, study finds

16.12.2003


David Somers


New research identifies the molecular mechanisms that keep a plant’s circadian clock running on a 24-hour schedule.

The study, reported this week in the journal Nature, is the first to describe the physical connection between two molecular components -– genes called TOC1 and ZTL -- that keep a plant’s “clock” running at the right speed. Scientists have spent more than a decade trying to understand the interactions between the components that regulate a plant’s timing.

Knowing how those components interact might benefit agriculture, as the clock controls activities like flowering time in plants, said David Somers, a study co-author and an assistant professor of plant biology at Ohio State University.



"Understanding how the clock works on the molecular level means that we can begin to understand, and perhaps manipulate, when a plant flowers," he said. "One potential limitation to where plants can grow is day length – some plants need more exposure to light than do others.

"If we could make a plant flower earlier in the growing season – assuming that temperatures were warm enough – we could possibly extend that plant’s range into a region in which it normally had difficulty growing."

Somers conducted the study with Woe-Yoon Kim, a postdoctoral researcher in plant biotechnology at Ohio State, and Paloma Más and Steve Kay, both with the Scripps Research Institute in La Jolla, Calif.

The researchers conducted experiments on Arabidopsis thaliana, or thale cress plants. They looked at plants with normal TOC1 and ZTL genes and also at Arabidopsis plants with either a mutant TOC1 or ZTL gene. Observing changes in mutant strains gave the researchers information on each gene’s involvement in regulating the circadian clock.

"We wanted to know what keeps a plant’s circadian clock running at the right speed," Somers said.

A faulty TOC1 gene caused the plants to run on a faster schedule – their circadian clocks had sped up to 20 hours. Conversely, mutations in the ZTL gene slowed the clock down to 27 hours. If both genes were missing entirely, the clock still ran, but at the wrong speed.

The researchers also looked for, and found, a strong physical interaction between TOC1 and ZTL.

"It became clear that ZTL is heavily involved in controlling the level of TOC1 in the plants," Somers said. "ZTL degrades TOC1, and this degradation is vital for normal plant functioning.

"We knew that TOC1 was one of the main components in controlling the clock’s pace," he continued. "Now we know that ZTL indirectly controls the clock’s pace through its effect on TOC1 degradation."

These findings help shed light on mechanisms that have puzzled scientists for years.

"The molecular components of the plant clock aren’t well understood," Somers said. "And, unlike the mammalian circadian clock, a lot of the individual players are still unidentified."

Just as in animals, plants’ circadian clocks are set by light and dark cycles, Somers said. In humans, feeling sleepy close to bedtime is controlled in part by the clock. In plants, the circadian clock controls the production of enzymes and other components involved in photosynthesis.

"If a plant can anticipate sunrise, it can have the necessary photosynthetic compounds prepared in advance," said Somers. "Many of the enzymes and molecular components of photosynthesis have to be re-made daily, as harvesting sunlight and turning it into useful energy is a destructive process.

"It’s to a plant’s advantage to be ready to absorb sunlight when it becomes available."

The study was funded by grants from the National Institutes of Health and the National Science Foundation.


Contact: David Somers, (614) 292-2551; Somers.24@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/circlock.htm

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>