Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ohio State creates gene chip for horse

16.12.2003


Alicia Bertone


Researchers at Ohio State University have created a DNA gene chip that contains thousands of the genes for a horse and one of the first gene chips for a domestic animal.

The new chip houses more than 3,200 expressed horse genes on a sliver of glass about the size of a postage stamp. When the researchers began developing this chip two years ago, only 200 horse genes were known.

This new chip will allow researchers to scan an individual horses genes at once to see which ones are active in a certain situation. For example, drug companies might use a gene chip to predict how a particular drug will affect an animal.



Since their invention nearly a decade ago, gene chips have revolutionized some basic approaches to research. Having a representative gene chip for a large animal could lead to better accuracy in studying human disease. Commercial gene chips already exist for humans, mice, rats, rice plants and a number of microorganisms.

"Although we rely on animal models to study human diseases, we really aren’t sure what some of the genetic differences are between those animal models and humans," said Alicia Bertone, the professor of veterinary clinical sciences who led Ohio State’s efforts in developing the equine gene chip.

"The genetic differences between humans and most animals are small in most cases, more than 90 percent of our DNA is similar," Bertone said. Knowing which genes are similar can be a boon to researchers who use animal models to learn about human diseases.

"Gene chips can help uncover these key differences, giving us critical information before we launch into an experiment," Bertone said. "The scientific community has invested a lot of money in animal models that don’t truly represent the human situation, so having this kind of information is extremely beneficial."

Bertone developed the chip with the help of Weisong Gu, a postdoctoral researcher in veterinary clinical sciences at Ohio State. Gu created a computer program that helped he and Bertone discover and describe 3,088 horse genes. They added these genes to the 200 already-known genes to create the chip. In order to define the genes, the researchers compared sequences of horse DNA to already-known human genes. Bertone said there are likely thousands of more genes yet to be identified for the horse.

Data derived from the equine gene chip could give researchers insight into gene expression for specific equine and human diseases and conditions. For example, gene chips let researchers see how thousands of genes respond to an illness. This information can be used clinically to study disease in horses and in translational research from horse to human.

"The closer we can demonstrate that an animal model really mimics a human disease, the better off we are," said Bertone, adding that horses are often used as models for orthopedic diseases, such as osteoarthritis and osteochondrosis a disease that inhibits bone growth. The equine gene chip can also be used to identify horse diseases such as equine protozoal myelitis (EPM), a debilitating neurological disease. Also, testing a drug or other therapy is typically done in large animals, such as horses, dogs and cats, before being tested on humans.

"More accurate animal models mean we’ll spend less money on and use fewer animals for finding cures," Bertone said. "Billions of dollars are invested in developing drugs that work really well in mice but fail in larger animal models and humans."

The new equine chip includes genes that regulate cell death, the cell cycle, cell signaling and development. The cost of the chip is around $350 to $450.

This work was supported in part by Affymetrix, Inc., the manufacturer of a variety of gene chips.


Contact: Alicia Bertone, 614-292-6661; Bertone.1@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/genechip.htm

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>