Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ohio State creates gene chip for horse

16.12.2003


Alicia Bertone


Researchers at Ohio State University have created a DNA gene chip that contains thousands of the genes for a horse and one of the first gene chips for a domestic animal.

The new chip houses more than 3,200 expressed horse genes on a sliver of glass about the size of a postage stamp. When the researchers began developing this chip two years ago, only 200 horse genes were known.

This new chip will allow researchers to scan an individual horses genes at once to see which ones are active in a certain situation. For example, drug companies might use a gene chip to predict how a particular drug will affect an animal.



Since their invention nearly a decade ago, gene chips have revolutionized some basic approaches to research. Having a representative gene chip for a large animal could lead to better accuracy in studying human disease. Commercial gene chips already exist for humans, mice, rats, rice plants and a number of microorganisms.

"Although we rely on animal models to study human diseases, we really aren’t sure what some of the genetic differences are between those animal models and humans," said Alicia Bertone, the professor of veterinary clinical sciences who led Ohio State’s efforts in developing the equine gene chip.

"The genetic differences between humans and most animals are small in most cases, more than 90 percent of our DNA is similar," Bertone said. Knowing which genes are similar can be a boon to researchers who use animal models to learn about human diseases.

"Gene chips can help uncover these key differences, giving us critical information before we launch into an experiment," Bertone said. "The scientific community has invested a lot of money in animal models that don’t truly represent the human situation, so having this kind of information is extremely beneficial."

Bertone developed the chip with the help of Weisong Gu, a postdoctoral researcher in veterinary clinical sciences at Ohio State. Gu created a computer program that helped he and Bertone discover and describe 3,088 horse genes. They added these genes to the 200 already-known genes to create the chip. In order to define the genes, the researchers compared sequences of horse DNA to already-known human genes. Bertone said there are likely thousands of more genes yet to be identified for the horse.

Data derived from the equine gene chip could give researchers insight into gene expression for specific equine and human diseases and conditions. For example, gene chips let researchers see how thousands of genes respond to an illness. This information can be used clinically to study disease in horses and in translational research from horse to human.

"The closer we can demonstrate that an animal model really mimics a human disease, the better off we are," said Bertone, adding that horses are often used as models for orthopedic diseases, such as osteoarthritis and osteochondrosis a disease that inhibits bone growth. The equine gene chip can also be used to identify horse diseases such as equine protozoal myelitis (EPM), a debilitating neurological disease. Also, testing a drug or other therapy is typically done in large animals, such as horses, dogs and cats, before being tested on humans.

"More accurate animal models mean we’ll spend less money on and use fewer animals for finding cures," Bertone said. "Billions of dollars are invested in developing drugs that work really well in mice but fail in larger animal models and humans."

The new equine chip includes genes that regulate cell death, the cell cycle, cell signaling and development. The cost of the chip is around $350 to $450.

This work was supported in part by Affymetrix, Inc., the manufacturer of a variety of gene chips.


Contact: Alicia Bertone, 614-292-6661; Bertone.1@osu.edu
Written by Holly Wagner, (614) 292-8310; Wagner.235@osu.edu

Holly Wagner | OSU
Further information:
http://researchnews.osu.edu/archive/genechip.htm

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks