Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key player in respiratory memory

16.12.2003


By studying the "memory" of the respiratory system, a group of researchers from the University of Wisconsin-Madison have identified a key player - a protein called BDNF that’s involved in learning - responsible for the body’s ability to keep breathing properly, despite the challenges it may face.



The findings, published Dec. 14 in the online edition of Nature Neuroscience, could provide ideas of new drug targets, which could lead to new treatments for or ways to prevent a number of potentially fatal breathing disorders, including sleep apnea, sudden infant death syndrome and some related to spinal cord injuries, according to the researchers.

Every few seconds, we draw a breath and then release it. If for some reason this routine is interrupted - oxygen levels are low or airways are blocked, for example - our bodies respond accordingly. In the case of oxygen deprivation, the nerve cells in the brain send messages to motor neurons along the spine, which then tell certain muscles involved in breathing to work harder. As a result, a person may take deeper breaths.


If the breathing disruption is experienced regularly, the respiratory system remembers the disruption and most likely will respond more vigorously in the future. Researchers call this change in neural behavior "neuro-plasticity."

In some cases, however, the respiratory system may not remember, says Gordon Mitchell, chair of the comparative biosciences department at UW-Madison’s School of Veterinary Medicine and senior author of the recent paper. He notes that some people who have sleep apnea - a disorder where breathing stops repeatedly during sleep - may have inadequate respiratory memories. He adds that individuals with spinal cord injuries in the neck often must rely on ventilators to help them breathe.

"For them, breathing is a bigger problem than never walking again," says Mitchell. "To breathe is to live."

To allow such patients to breathe more easily, Mitchell and others are exploring the mechanisms underlying respiratory memory so as to find ways to enhance it, such as through drugs.

"If we can understand how breathing changes as a result of experience, we can develop techniques to intervene when breathing is compromised," says Tracy Baker-Herman, a postdoctoral fellow at UW-Madison and first author of the paper.

To begin to uncover these mechanisms, the researchers exposed rats to three five-minute intervals of hypoxia, or decreased oxygen. Sixty minutes after exposure, they recorded the respiratory-related activity levels in the phrenic nerve, which controls the diaphragm muscle. If the activity levels increased after exposure, the researchers would know that the respiratory system, specifically this nerve, had developed a memory of low oxygen.

The Wisconsin scientists did, in fact, record this memory: Activity levels after exposure were 80 percent higher than before the intervals started, suggesting that this nerve remembered experiencing periods of low oxygen levels, says Mitchell.

Making this connection, however, was not enough, says Baker-Herman.

The researchers wanted to know what caused this memory. So, they analyzed segments of spinal cord taken from rats after they had been exposed for 60 minutes to either normal or decreased amounts of oxygen.

The researchers looked specifically for changes in the BDNF protein, or brain derived neurotrophic factor, which is known to sustain and even stimulate neuronal function in the brain. The findings show that intermittent periods of decreased oxygen increased concentrations of the BDNF protein in the phrenic nerve by 56 percent.

Through further testing, the researchers learned that BDNF is, in fact, responsible for increasing activity in this nerve, thereby stimulating a respiratory memory. For example, when the researchers blocked BDNF production in rats with a new technique known as RNA interference and then exposed the rats to intervals of decreased oxygen, they observed no increase in nerve activity. But, when they injected the protein directly into the phrenic nerve of rats they found that neuronal activity increased by 125 percent.

Both findings, says Mitchell, point to the integral role BDNF plays in enhancing the respiratory system’s response to disruptions in breathing. "They show causality between BDNF and phrenic long-term facilitation (or memory)," he says, adding, "the role of BDNF in respiratory plasticity was not known at all before now."

With this new information, Mitchell, Baker-Herman and others in their group continue to search for additional players in respiratory memory. "The closer we get to the ultimate cause," says Mitchell, "the better the chance of developing new pharmaceutical therapies."

These therapies would have the potential not only to restore breathing ability to individuals struck with devastating spinal cord injuries, but also to alleviate the effects of sleep apnea - tiredness, learning impairments, high blood pressure, even death - among the 5 percent of the population with this breathing disorder. Mitchell adds, "The promise for treating other disorders where breathing is disrupted, including sudden infant death syndrome and ALS (Amyotrophic Lateral Sclerosis or Lou Gehrig’s disease) is not trivial."

But he cautions that the basic science behind these disorders is still being learned and that pharmacological treatments will follow only after that knowledge has been gained.


Additional Contacts: Gordon Mitchell, (608) 263-9826, mitchell@svm.vetmed.wisc.edu; Tracy Baker-Herman, (608) 263-5013, bakert@svm.vetmed.wisc.edu

Emily Carlson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>