Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify key player in respiratory memory

16.12.2003


By studying the "memory" of the respiratory system, a group of researchers from the University of Wisconsin-Madison have identified a key player - a protein called BDNF that’s involved in learning - responsible for the body’s ability to keep breathing properly, despite the challenges it may face.



The findings, published Dec. 14 in the online edition of Nature Neuroscience, could provide ideas of new drug targets, which could lead to new treatments for or ways to prevent a number of potentially fatal breathing disorders, including sleep apnea, sudden infant death syndrome and some related to spinal cord injuries, according to the researchers.

Every few seconds, we draw a breath and then release it. If for some reason this routine is interrupted - oxygen levels are low or airways are blocked, for example - our bodies respond accordingly. In the case of oxygen deprivation, the nerve cells in the brain send messages to motor neurons along the spine, which then tell certain muscles involved in breathing to work harder. As a result, a person may take deeper breaths.


If the breathing disruption is experienced regularly, the respiratory system remembers the disruption and most likely will respond more vigorously in the future. Researchers call this change in neural behavior "neuro-plasticity."

In some cases, however, the respiratory system may not remember, says Gordon Mitchell, chair of the comparative biosciences department at UW-Madison’s School of Veterinary Medicine and senior author of the recent paper. He notes that some people who have sleep apnea - a disorder where breathing stops repeatedly during sleep - may have inadequate respiratory memories. He adds that individuals with spinal cord injuries in the neck often must rely on ventilators to help them breathe.

"For them, breathing is a bigger problem than never walking again," says Mitchell. "To breathe is to live."

To allow such patients to breathe more easily, Mitchell and others are exploring the mechanisms underlying respiratory memory so as to find ways to enhance it, such as through drugs.

"If we can understand how breathing changes as a result of experience, we can develop techniques to intervene when breathing is compromised," says Tracy Baker-Herman, a postdoctoral fellow at UW-Madison and first author of the paper.

To begin to uncover these mechanisms, the researchers exposed rats to three five-minute intervals of hypoxia, or decreased oxygen. Sixty minutes after exposure, they recorded the respiratory-related activity levels in the phrenic nerve, which controls the diaphragm muscle. If the activity levels increased after exposure, the researchers would know that the respiratory system, specifically this nerve, had developed a memory of low oxygen.

The Wisconsin scientists did, in fact, record this memory: Activity levels after exposure were 80 percent higher than before the intervals started, suggesting that this nerve remembered experiencing periods of low oxygen levels, says Mitchell.

Making this connection, however, was not enough, says Baker-Herman.

The researchers wanted to know what caused this memory. So, they analyzed segments of spinal cord taken from rats after they had been exposed for 60 minutes to either normal or decreased amounts of oxygen.

The researchers looked specifically for changes in the BDNF protein, or brain derived neurotrophic factor, which is known to sustain and even stimulate neuronal function in the brain. The findings show that intermittent periods of decreased oxygen increased concentrations of the BDNF protein in the phrenic nerve by 56 percent.

Through further testing, the researchers learned that BDNF is, in fact, responsible for increasing activity in this nerve, thereby stimulating a respiratory memory. For example, when the researchers blocked BDNF production in rats with a new technique known as RNA interference and then exposed the rats to intervals of decreased oxygen, they observed no increase in nerve activity. But, when they injected the protein directly into the phrenic nerve of rats they found that neuronal activity increased by 125 percent.

Both findings, says Mitchell, point to the integral role BDNF plays in enhancing the respiratory system’s response to disruptions in breathing. "They show causality between BDNF and phrenic long-term facilitation (or memory)," he says, adding, "the role of BDNF in respiratory plasticity was not known at all before now."

With this new information, Mitchell, Baker-Herman and others in their group continue to search for additional players in respiratory memory. "The closer we get to the ultimate cause," says Mitchell, "the better the chance of developing new pharmaceutical therapies."

These therapies would have the potential not only to restore breathing ability to individuals struck with devastating spinal cord injuries, but also to alleviate the effects of sleep apnea - tiredness, learning impairments, high blood pressure, even death - among the 5 percent of the population with this breathing disorder. Mitchell adds, "The promise for treating other disorders where breathing is disrupted, including sudden infant death syndrome and ALS (Amyotrophic Lateral Sclerosis or Lou Gehrig’s disease) is not trivial."

But he cautions that the basic science behind these disorders is still being learned and that pharmacological treatments will follow only after that knowledge has been gained.


Additional Contacts: Gordon Mitchell, (608) 263-9826, mitchell@svm.vetmed.wisc.edu; Tracy Baker-Herman, (608) 263-5013, bakert@svm.vetmed.wisc.edu

Emily Carlson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>