Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Suicide proteins’ contribute to sperm creation

15.12.2003



You might say that caspases are obsessed with death. The primary agents of programmed cell death, or apoptosis, caspases kill cells by destroying proteins that sustain cellular processes. Apoptosis, a highly controlled sequence of events that eliminates dangerous or unnecessary cells, contributes to a wide variety of developmental and physiological processes--in a developing embryo, apoptosis creates the space between fingers and adjusts nerve cell populations to match the number of cells they target; in an adult, apoptosis counters cell proliferation to maintain tissue size and density. Now it appears that caspases may also play a role in creating life. As Bruce Hay, Jun Huh, and colleagues of the California Institute of Technology, report in this issue, multiple caspases and caspase regulators are required for the proper formation of free-swimming sperm in the fruitfly Drosophila.

Caspases, which typically exist in a quiescent state in nearly all cells, are regulated through a complex network of activators and inhibitors. Once activated, a "caspase cascade" ultimately cleaves and irreversibly alters the function of essential cellular proteins, leading to apoptosis. Not surprisingly, cells keep caspase activation under tight wraps. That’s why it’s intriguing that multiple caspases normally associated with the induction of cell death participate in this non-apoptotic process.

During spermatogenesis, germline precursor cells--the cells that generate sex cells--give rise to 64 haploid spermatids. Spermatids are connected by intracellular "bridges" that, along with most other cytoplasmic components, must be expelled in a process called "individualization" to create terminally differentiated free-swimming sperm. A similar process--elimination of cytoplasm and membrane packaging of individual spermatids--also occurs in mammals, and its disruption is associated with male infertility.



Hay’s group studied the consequences of inhibiting caspase activity in the male germline cells of fruitflies and found that individualization depends on caspase activity. The researchers went on to characterize the pathways that activate caspases during sperm individualization and found that several different apoptosis-related caspases and caspase regulators are recruited through different pathways at distinct points in time and space to create individually packaged, free-swimming sperm, a distinctly non-apoptotic process.

Insights into the molecular basis of caspase activation in sperm individualization could provide clues to male infertility and suggest possible treatments.


All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

Dr. Bruce Hay | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>