Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Suicide proteins’ contribute to sperm creation

15.12.2003



You might say that caspases are obsessed with death. The primary agents of programmed cell death, or apoptosis, caspases kill cells by destroying proteins that sustain cellular processes. Apoptosis, a highly controlled sequence of events that eliminates dangerous or unnecessary cells, contributes to a wide variety of developmental and physiological processes--in a developing embryo, apoptosis creates the space between fingers and adjusts nerve cell populations to match the number of cells they target; in an adult, apoptosis counters cell proliferation to maintain tissue size and density. Now it appears that caspases may also play a role in creating life. As Bruce Hay, Jun Huh, and colleagues of the California Institute of Technology, report in this issue, multiple caspases and caspase regulators are required for the proper formation of free-swimming sperm in the fruitfly Drosophila.

Caspases, which typically exist in a quiescent state in nearly all cells, are regulated through a complex network of activators and inhibitors. Once activated, a "caspase cascade" ultimately cleaves and irreversibly alters the function of essential cellular proteins, leading to apoptosis. Not surprisingly, cells keep caspase activation under tight wraps. That’s why it’s intriguing that multiple caspases normally associated with the induction of cell death participate in this non-apoptotic process.

During spermatogenesis, germline precursor cells--the cells that generate sex cells--give rise to 64 haploid spermatids. Spermatids are connected by intracellular "bridges" that, along with most other cytoplasmic components, must be expelled in a process called "individualization" to create terminally differentiated free-swimming sperm. A similar process--elimination of cytoplasm and membrane packaging of individual spermatids--also occurs in mammals, and its disruption is associated with male infertility.



Hay’s group studied the consequences of inhibiting caspase activity in the male germline cells of fruitflies and found that individualization depends on caspase activity. The researchers went on to characterize the pathways that activate caspases during sperm individualization and found that several different apoptosis-related caspases and caspase regulators are recruited through different pathways at distinct points in time and space to create individually packaged, free-swimming sperm, a distinctly non-apoptotic process.

Insights into the molecular basis of caspase activation in sperm individualization could provide clues to male infertility and suggest possible treatments.


All works published in PLoS Biology are open access. Everything is immediately available without cost to anyone, anywhere--to read, download, redistribute, include in databases, and otherwise use--subject only to the condition that the original authorship is properly attributed. Copyright is retained by the author. The Public Library of Science uses the Creative Commons Attribution License.

Dr. Bruce Hay | PLoS
Further information:
http://www.plosbiology.org

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>