Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchrotron Sheds Light On Bacteria’s Solar Cell

12.12.2003


Researchers based at the University of Glasgow, using X-ray data collected at the Synchrotron Radiation Source (SRS) at CCLRC Daresbury Laboratory, have made a major advance in our understanding of the process by which sunlight is converted to food energy, without which life on earth could not exist. The work is published this week (12 December 2003) in the journal Science.



Green plants convert the sun’s energy to a usable form in a process called photosynthesis, which ultimately gives us all the oxygen and food we need to survive. Photosynthetic bacteria have evolved to do all this efficiently in a single cell, so they make good model systems. The Glasgow team, led by Professors Richard Cogdell and Neil Isaacs, worked out the structure of the LH1 light-absorbing complex and Reaction Centre that lies at the heart of photosynthesis in the purple bacterium Rhodopseudomonas palustris.

They first isolated and crystallised the intact protein complex from the bacterial cell membrane, then recorded its X-ray diffraction pattern using X-rays generated at the Daresbury synchrotron.‘The highly focused and intense X-ray beam provided at Daresbury was essential for this data collection’, commented Professor Isaacs.


The X-ray data helped to solve a long-standing mystery about the structure of the LH1-RC. Solar energy absorbed by the light harvesting complex is used by the Reaction Centre to power the transfer of electrons across the cell membrane, using a shuttle molecule to carry the electrons. Researchers have been puzzled about how this shuttle molecule gets in and out of the Reaction Centre, which is surrounded by the ring of protein molecules that makes up the LH1. The structure shows that the LH1 ring has a molecular ‘gate’ to enable the shuttle molecule to move freely.

Since 1984 the structures of only 25 membrane proteins have been worked out, compared with around 15,000 soluble ones. ‘Membrane proteins are notoriously difficult to crystallise in the first instance,’ explained Miroslav Papiz, Head of the Biology and Medicine College at Daresbury, ‘and when crystals are obtained they nearly always diffract very weakly. This is why such an intense source of X-rays is needed to study them.’

This work is the third major breakthrough in this fundamental area of biological research to be based on X-ray crystallographic data collected at the SRS. In 1995 the teams of Richard Cogdell and Neil Isaacs at Glasgow, in collaboration with Miroslav Papiz and the Daresbury team, elucidated the structure of another key component of the light-harvesting machinery, the LH2 complex, from the purple bacterium Rhodopseudomonas acidophila. The LH2 complex funnels energy into the LH1 complex. This year the resolution of this structure has been further improved, helping to reveal more details about energy transfer within it.

Meanwhile, in 1997 John Walker from the Laboratory for Molecular Biology in Cambridge was awarded a Nobel Prize for his research on the enzyme responsible for formation of the energy-rich molecule ATP at the end of this energy transfer sequence, based on crystallographic studies done at the SRS in 1995.

Tony Buckley | alfa
Further information:
http://www.clrc.ac.uk

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>