Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchrotron Sheds Light On Bacteria’s Solar Cell

12.12.2003


Researchers based at the University of Glasgow, using X-ray data collected at the Synchrotron Radiation Source (SRS) at CCLRC Daresbury Laboratory, have made a major advance in our understanding of the process by which sunlight is converted to food energy, without which life on earth could not exist. The work is published this week (12 December 2003) in the journal Science.



Green plants convert the sun’s energy to a usable form in a process called photosynthesis, which ultimately gives us all the oxygen and food we need to survive. Photosynthetic bacteria have evolved to do all this efficiently in a single cell, so they make good model systems. The Glasgow team, led by Professors Richard Cogdell and Neil Isaacs, worked out the structure of the LH1 light-absorbing complex and Reaction Centre that lies at the heart of photosynthesis in the purple bacterium Rhodopseudomonas palustris.

They first isolated and crystallised the intact protein complex from the bacterial cell membrane, then recorded its X-ray diffraction pattern using X-rays generated at the Daresbury synchrotron.‘The highly focused and intense X-ray beam provided at Daresbury was essential for this data collection’, commented Professor Isaacs.


The X-ray data helped to solve a long-standing mystery about the structure of the LH1-RC. Solar energy absorbed by the light harvesting complex is used by the Reaction Centre to power the transfer of electrons across the cell membrane, using a shuttle molecule to carry the electrons. Researchers have been puzzled about how this shuttle molecule gets in and out of the Reaction Centre, which is surrounded by the ring of protein molecules that makes up the LH1. The structure shows that the LH1 ring has a molecular ‘gate’ to enable the shuttle molecule to move freely.

Since 1984 the structures of only 25 membrane proteins have been worked out, compared with around 15,000 soluble ones. ‘Membrane proteins are notoriously difficult to crystallise in the first instance,’ explained Miroslav Papiz, Head of the Biology and Medicine College at Daresbury, ‘and when crystals are obtained they nearly always diffract very weakly. This is why such an intense source of X-rays is needed to study them.’

This work is the third major breakthrough in this fundamental area of biological research to be based on X-ray crystallographic data collected at the SRS. In 1995 the teams of Richard Cogdell and Neil Isaacs at Glasgow, in collaboration with Miroslav Papiz and the Daresbury team, elucidated the structure of another key component of the light-harvesting machinery, the LH2 complex, from the purple bacterium Rhodopseudomonas acidophila. The LH2 complex funnels energy into the LH1 complex. This year the resolution of this structure has been further improved, helping to reveal more details about energy transfer within it.

Meanwhile, in 1997 John Walker from the Laboratory for Molecular Biology in Cambridge was awarded a Nobel Prize for his research on the enzyme responsible for formation of the energy-rich molecule ATP at the end of this energy transfer sequence, based on crystallographic studies done at the SRS in 1995.

Tony Buckley | alfa
Further information:
http://www.clrc.ac.uk

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>