Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Synchrotron Sheds Light On Bacteria’s Solar Cell

12.12.2003


Researchers based at the University of Glasgow, using X-ray data collected at the Synchrotron Radiation Source (SRS) at CCLRC Daresbury Laboratory, have made a major advance in our understanding of the process by which sunlight is converted to food energy, without which life on earth could not exist. The work is published this week (12 December 2003) in the journal Science.



Green plants convert the sun’s energy to a usable form in a process called photosynthesis, which ultimately gives us all the oxygen and food we need to survive. Photosynthetic bacteria have evolved to do all this efficiently in a single cell, so they make good model systems. The Glasgow team, led by Professors Richard Cogdell and Neil Isaacs, worked out the structure of the LH1 light-absorbing complex and Reaction Centre that lies at the heart of photosynthesis in the purple bacterium Rhodopseudomonas palustris.

They first isolated and crystallised the intact protein complex from the bacterial cell membrane, then recorded its X-ray diffraction pattern using X-rays generated at the Daresbury synchrotron.‘The highly focused and intense X-ray beam provided at Daresbury was essential for this data collection’, commented Professor Isaacs.


The X-ray data helped to solve a long-standing mystery about the structure of the LH1-RC. Solar energy absorbed by the light harvesting complex is used by the Reaction Centre to power the transfer of electrons across the cell membrane, using a shuttle molecule to carry the electrons. Researchers have been puzzled about how this shuttle molecule gets in and out of the Reaction Centre, which is surrounded by the ring of protein molecules that makes up the LH1. The structure shows that the LH1 ring has a molecular ‘gate’ to enable the shuttle molecule to move freely.

Since 1984 the structures of only 25 membrane proteins have been worked out, compared with around 15,000 soluble ones. ‘Membrane proteins are notoriously difficult to crystallise in the first instance,’ explained Miroslav Papiz, Head of the Biology and Medicine College at Daresbury, ‘and when crystals are obtained they nearly always diffract very weakly. This is why such an intense source of X-rays is needed to study them.’

This work is the third major breakthrough in this fundamental area of biological research to be based on X-ray crystallographic data collected at the SRS. In 1995 the teams of Richard Cogdell and Neil Isaacs at Glasgow, in collaboration with Miroslav Papiz and the Daresbury team, elucidated the structure of another key component of the light-harvesting machinery, the LH2 complex, from the purple bacterium Rhodopseudomonas acidophila. The LH2 complex funnels energy into the LH1 complex. This year the resolution of this structure has been further improved, helping to reveal more details about energy transfer within it.

Meanwhile, in 1997 John Walker from the Laboratory for Molecular Biology in Cambridge was awarded a Nobel Prize for his research on the enzyme responsible for formation of the energy-rich molecule ATP at the end of this energy transfer sequence, based on crystallographic studies done at the SRS in 1995.

Tony Buckley | alfa
Further information:
http://www.clrc.ac.uk

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>