Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ability to smell food regulated by enzyme’s interaction with RNA interference pathway

12.12.2003


ADARs do more than alter codon sequence in RNA



Recent studies at the University of Utah suggest new ways of regulating the behaviors that allow us to smell food, learn, and remember.

Brenda L. Bass, Ph.D., professor of biochemistry at the U School of Medicine and a Howard Hughes Medical Institute investigator, and Leath A. Tonkin, a graduate student in her lab, published their findings in the Dec. 5 issue of the journal Science.


With the help of a tiny worm, C. elegans, Bass and Tonkin discovered that ADAR, an enzyme abundant in the nervous system, interacts with a pathway called RNAi (RNA interference). When it’s functioning properly, RNAi, which was discovered in 1998, ensures that certain genes are turned on in some cells and turned off in others.

C. elegans that have mutations in their ADAR genes have behavioral defects, according to Bass. For example, mutant worms that lack ADARs have trouble finding food. When placed near food a normal worm crawls quickly to the food but an ADAR mutant may crawl in a completely different direction. To see if ADAR functions were related to the RNAi pathway, Bass and Tonkin made strains of the worm with mutations in both the ADAR genes and in genes required for RNAi.

"Remarkably, in these worms, the behavioral defects associated with the mutations in the ADAR genes were eliminated," Bass said. "This suggests that ADARs intersect with the RNAi pathway and that many of the behavioral defects of ADAR mutants are caused by aberrant RNAi."

RNA is a nucleic acid that is an essential component of all cells. In a process called transcription, the information in our DNA genes is passed to RNA. A second process called translation allows the information in RNA to be turned into protein. Typically, one gene has the information for one protein, but with the help of "editing" enzymes such as ADAR, multiple proteins can be made from one gene.

ADARs enable RNA to produce different proteins by altering the sequence of nucleotides that contain the information for making a protein. That had been considered ADARs’ most important function, but the research of Bass and Tonkin shows that ADARs perform other jobs as well.


###
For information contact:

Brenda L. Bass, Ph.D., 801-581-4884, bbass@howard.genetics.utah.edu

Or

Phil Sahm, U of U Health Sciences Center Office of Public Affairs, 801-581-7387

Brenda Bass, Ph.D. | EurekAlert!
Further information:
http://www.uuhsc.utah.edu/

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>