Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down That Long Dusty Trail

11.12.2003


While Mars can claim some unique features - the largest volcano and the deepest canyon in the solar system - its rocky, dusty, cold landscape has yet to yield signs of the ultimate prize: life.



Three simple words - follow the water - have become the mantra of astrobiologists studying the Red Planet because the presence of water is believed to be a prerequisite for life, either past or present.

But as scientists look for evidence of water on Mars, they are faced with an underlying dilemma: Will they know life when they see it?


“Scientists’ approach to finding life is very earth-centric,” said Kenneth Nealson, holder of the USC Wrigley Chair in Environmental Sciences. “Based on what we know about life on Earth, we set the limits for where we might look on other planets.”

In a paper published in the current edition of the journal Astrobiology, Nealson - and Bruce Jakosky of the University of Colorado - speculated that a microbe that exists in the coldest temperatures on Earth might provide clues about how a similar organism could survive beneath the Martian polar ice caps.

The microbe in question was discovered by Corien Bakersman, a postdoctoral student in Nealson’s lab, and remains the only one of its kind. It was isolated from a cryopeg - a small, salty, liquid lake found under the Siberian permafrost.

The bacteria, named Psychrobacter cryopegella, can grow at -10 Celsius and can stay alive and even keep metabolizing at an astonishing -20 Celsius While it isn’t able to replicate itself at that extreme temperature, it maintains the minimal metabolism needed to repair and maintain its cell structures.

“This organism can exist at colder temperatures than any previously discovered,” said Nealson, a professor of earth sciences and biological sciences in the USC College of Letters, Arts and Sciences.

“We know it’s possible here, so certainly it’s possible somewhere else. This bacteria expands the limits of life, so if you can find places on Mars that are minus 20 degrees centigrade, you should take a look.”

Nealson and Jakosky looked to the Martian polar regions for a habitat similar to the one in which cryopegella survives.

While temperatures at Mars’ equatorial and mid-latitudes regularly rise above -20 Celsius, it is unlikely that there is liquid water there because of its potential to be absorbed into the atmosphere, Nealson said.

But, liquid water could be found under the frozen polar caps, he added.

Climate changes on Mars, as with all of the nine planets that orbit the sun, are tied to its obliquity, or tilt of its axis with respect to its orbital plane.

Nealson and his colleagues proposed that as the Red Planet tilted - exposing more of itself to the sun at various times in its history - temperatures at the polar ice caps were warmed to minus -20 Celsius or higher.

“If the ice at the polar caps warmed to liquid water, organisms like cryopegella could have awakened and repaired any damage that might have occurred to their various cellular components,” Nealson said.

“Then, as the obliquity changed a few million years later and the planet got colder and colder, these organisms would have been the last survivors.”

But, he added, “I would never say, ‘Go and look for this bacteria.’ I would say, ‘This is a habitat that we should look at on Mars because on Earth, similar habitats have life.’”

The paper’s other contributors were USC’s Corien Bakerman and the University of Colorado’s Ruth Ley and Michael Mellon.

Usha Sutliff | USC News Service
Further information:
http://www.usc.edu/uscnews/story.php?id=9590

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>