Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down That Long Dusty Trail

11.12.2003


While Mars can claim some unique features - the largest volcano and the deepest canyon in the solar system - its rocky, dusty, cold landscape has yet to yield signs of the ultimate prize: life.



Three simple words - follow the water - have become the mantra of astrobiologists studying the Red Planet because the presence of water is believed to be a prerequisite for life, either past or present.

But as scientists look for evidence of water on Mars, they are faced with an underlying dilemma: Will they know life when they see it?


“Scientists’ approach to finding life is very earth-centric,” said Kenneth Nealson, holder of the USC Wrigley Chair in Environmental Sciences. “Based on what we know about life on Earth, we set the limits for where we might look on other planets.”

In a paper published in the current edition of the journal Astrobiology, Nealson - and Bruce Jakosky of the University of Colorado - speculated that a microbe that exists in the coldest temperatures on Earth might provide clues about how a similar organism could survive beneath the Martian polar ice caps.

The microbe in question was discovered by Corien Bakersman, a postdoctoral student in Nealson’s lab, and remains the only one of its kind. It was isolated from a cryopeg - a small, salty, liquid lake found under the Siberian permafrost.

The bacteria, named Psychrobacter cryopegella, can grow at -10 Celsius and can stay alive and even keep metabolizing at an astonishing -20 Celsius While it isn’t able to replicate itself at that extreme temperature, it maintains the minimal metabolism needed to repair and maintain its cell structures.

“This organism can exist at colder temperatures than any previously discovered,” said Nealson, a professor of earth sciences and biological sciences in the USC College of Letters, Arts and Sciences.

“We know it’s possible here, so certainly it’s possible somewhere else. This bacteria expands the limits of life, so if you can find places on Mars that are minus 20 degrees centigrade, you should take a look.”

Nealson and Jakosky looked to the Martian polar regions for a habitat similar to the one in which cryopegella survives.

While temperatures at Mars’ equatorial and mid-latitudes regularly rise above -20 Celsius, it is unlikely that there is liquid water there because of its potential to be absorbed into the atmosphere, Nealson said.

But, liquid water could be found under the frozen polar caps, he added.

Climate changes on Mars, as with all of the nine planets that orbit the sun, are tied to its obliquity, or tilt of its axis with respect to its orbital plane.

Nealson and his colleagues proposed that as the Red Planet tilted - exposing more of itself to the sun at various times in its history - temperatures at the polar ice caps were warmed to minus -20 Celsius or higher.

“If the ice at the polar caps warmed to liquid water, organisms like cryopegella could have awakened and repaired any damage that might have occurred to their various cellular components,” Nealson said.

“Then, as the obliquity changed a few million years later and the planet got colder and colder, these organisms would have been the last survivors.”

But, he added, “I would never say, ‘Go and look for this bacteria.’ I would say, ‘This is a habitat that we should look at on Mars because on Earth, similar habitats have life.’”

The paper’s other contributors were USC’s Corien Bakerman and the University of Colorado’s Ruth Ley and Michael Mellon.

Usha Sutliff | USC News Service
Further information:
http://www.usc.edu/uscnews/story.php?id=9590

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>