Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Down That Long Dusty Trail

11.12.2003


While Mars can claim some unique features - the largest volcano and the deepest canyon in the solar system - its rocky, dusty, cold landscape has yet to yield signs of the ultimate prize: life.



Three simple words - follow the water - have become the mantra of astrobiologists studying the Red Planet because the presence of water is believed to be a prerequisite for life, either past or present.

But as scientists look for evidence of water on Mars, they are faced with an underlying dilemma: Will they know life when they see it?


“Scientists’ approach to finding life is very earth-centric,” said Kenneth Nealson, holder of the USC Wrigley Chair in Environmental Sciences. “Based on what we know about life on Earth, we set the limits for where we might look on other planets.”

In a paper published in the current edition of the journal Astrobiology, Nealson - and Bruce Jakosky of the University of Colorado - speculated that a microbe that exists in the coldest temperatures on Earth might provide clues about how a similar organism could survive beneath the Martian polar ice caps.

The microbe in question was discovered by Corien Bakersman, a postdoctoral student in Nealson’s lab, and remains the only one of its kind. It was isolated from a cryopeg - a small, salty, liquid lake found under the Siberian permafrost.

The bacteria, named Psychrobacter cryopegella, can grow at -10 Celsius and can stay alive and even keep metabolizing at an astonishing -20 Celsius While it isn’t able to replicate itself at that extreme temperature, it maintains the minimal metabolism needed to repair and maintain its cell structures.

“This organism can exist at colder temperatures than any previously discovered,” said Nealson, a professor of earth sciences and biological sciences in the USC College of Letters, Arts and Sciences.

“We know it’s possible here, so certainly it’s possible somewhere else. This bacteria expands the limits of life, so if you can find places on Mars that are minus 20 degrees centigrade, you should take a look.”

Nealson and Jakosky looked to the Martian polar regions for a habitat similar to the one in which cryopegella survives.

While temperatures at Mars’ equatorial and mid-latitudes regularly rise above -20 Celsius, it is unlikely that there is liquid water there because of its potential to be absorbed into the atmosphere, Nealson said.

But, liquid water could be found under the frozen polar caps, he added.

Climate changes on Mars, as with all of the nine planets that orbit the sun, are tied to its obliquity, or tilt of its axis with respect to its orbital plane.

Nealson and his colleagues proposed that as the Red Planet tilted - exposing more of itself to the sun at various times in its history - temperatures at the polar ice caps were warmed to minus -20 Celsius or higher.

“If the ice at the polar caps warmed to liquid water, organisms like cryopegella could have awakened and repaired any damage that might have occurred to their various cellular components,” Nealson said.

“Then, as the obliquity changed a few million years later and the planet got colder and colder, these organisms would have been the last survivors.”

But, he added, “I would never say, ‘Go and look for this bacteria.’ I would say, ‘This is a habitat that we should look at on Mars because on Earth, similar habitats have life.’”

The paper’s other contributors were USC’s Corien Bakerman and the University of Colorado’s Ruth Ley and Michael Mellon.

Usha Sutliff | USC News Service
Further information:
http://www.usc.edu/uscnews/story.php?id=9590

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>