Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene mutation leads to super-virulent strain of TB

09.12.2003


Disabling a set of genes in a strain of the tuberculosis bacteria surprisingly led to a mutant form of the pathogen that multiplied more quickly and was more lethal than its natural counterpart, according to a new study led by researchers at the University of California, Berkeley.



As early as two weeks after infection, researchers found significantly more bacteria from the organs of mice infected with the mutated tuberculosis (TB) bacteria than for mice infected with the unmodified, or "wild-type," strain. By 27 weeks, the mutant-infected mice started to die, while their counterparts infected with the wild-type strain survived until the end of the experiment at 41 weeks.

"These findings came as a complete surprise to us," said Dr. Lee Riley, professor of epidemiology and infectious diseases at UC Berkeley’s School of Public Health and principal investigator of the study. "We thought we had made a mistake, so we repeated the test several times, and we always got the same result."


The researchers say the study, to be published Dec. 8 in Proceedings of the National Academy of Sciences, sheds light on the mechanisms used by a pathogen that now infects one-third of the world’s population and kills 2 million people per year. According to the World Health Organization, which in 1993 declared TB a global emergency, an estimated 36 million people could die of TB by 2020 if the disease is not controlled.

The results were unexpected because prior studies pointed to the mce1 operon, the collection of genes that researchers disabled in the TB bacteria, as an important virulence factor that helped the organism invade cells. Researchers expected that mutating the mce1 genes would impair the pathogen’s ability to infect the mice. Instead, the bacteria became more deadly.

"This is one of the very few hypervirulent organisms ever created," said Lisa Morici, a lead author of the study who received her Ph.D. in infectious diseases from UC Berkeley in May. "This breaks a long-standing assumption among scientists that disabling a potential virulence gene weakens a pathogen."

Morici and Nobuyuki Shimono, assistant professor of medicine at Kyushu University’s Graduate School of Medical Sciences in Japan, are co-lead authors of the paper.

The researchers point out that even though the virulent strain of TB bacteria can be grown in a lab, it is not a likely candidate for use as a biological weapon. "Mycobacterium tuberculosis grows extremely slowly, is hard to aerosolize and, if it is not in a dormant stage, can be treated with antibiotics," said Morici, who is now a post-doctoral fellow at Tulane University’s School of Medicine. "There are several other virulent organisms out there that are easier to manipulate than TB."

The researchers compared the spleens, livers and lungs of mice at various time points throughout the experiment, from 24 hours to 41 weeks after infection. They found that the progression of the unmodified TB strain hit a plateau about 17 weeks after infection, while the mce1 mutated TB strain didn’t stop spreading until it killed its host.

The researchers also compared the reactions to normal and mutated forms of bacillus Calmette-Guérin (BCG), a weakened version of the TB bacteria that triggers an immune response but does not lead to disease.

They found that in the unmodified strains of both the TB bacteria and the BCG groups, there were well-defined granulomas, clusters of immune cells that surround TB bacteria to keep it in check. The researchers noticed that granulomas had not formed properly in the mutated strains of both the TB bacteria and the BCG groups.

The differences suggest that the mce1 gene mutations led to changes in the TB bacteria that impacted the host’s own immune response. "It appears that the host immune system does not recognize the mutated TB organisms, so the bacteria are left to grow unchecked," said Morici.

While the body typically summons granulomas to keep the TB bacteria from spreading and developing into an active infection, it does not completely eliminate the bug. When encased by granulomas, the bacteria move into a dormant, asymptomatic stage. It is when they sense a change in the host’s immune system, caused by such factors as the onset of diseases including AIDS, diabetes or cancer, that they begin to multiply again and cause the active TB disease.

"What we have learned is that the granuloma shield not only protects the host, it also protects the TB bacteria from the host’s other immune cells and antibiotic drugs that may otherwise kill the bacteria," said Shimono.

"The hallmark of the TB bacterium is its ability to stay dormant in a person’s body for years, making it one of the most successful bacteria around," said Riley. "Even if we could treat all the people now with active infection, we’d never be able to wipe out TB entirely because 60 percent of the people exposed to TB develop latent infections. TB is very difficult to treat not because it kills people rapidly, but because it stays dormant. By understanding the mechanism behind latency, we may also be able to develop new diagnostic tests to predict who will develop the active disease."

Other co-authors of the paper are Nicola Casali, Sally Cantrell and Ben Sidders at UC Berkeley’s School of Public Health; and Sabine Ehrt at Cornell University’s Weill Medical College.


The National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, supported this study.

Sarah Yang | UC Berkeley
Further information:
http://www.berkeley.edu/news/media/releases/2003/12/08_mutation.shtml

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>