Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene mutation leads to super-virulent strain of TB


Disabling a set of genes in a strain of the tuberculosis bacteria surprisingly led to a mutant form of the pathogen that multiplied more quickly and was more lethal than its natural counterpart, according to a new study led by researchers at the University of California, Berkeley.

As early as two weeks after infection, researchers found significantly more bacteria from the organs of mice infected with the mutated tuberculosis (TB) bacteria than for mice infected with the unmodified, or "wild-type," strain. By 27 weeks, the mutant-infected mice started to die, while their counterparts infected with the wild-type strain survived until the end of the experiment at 41 weeks.

"These findings came as a complete surprise to us," said Dr. Lee Riley, professor of epidemiology and infectious diseases at UC Berkeley’s School of Public Health and principal investigator of the study. "We thought we had made a mistake, so we repeated the test several times, and we always got the same result."

The researchers say the study, to be published Dec. 8 in Proceedings of the National Academy of Sciences, sheds light on the mechanisms used by a pathogen that now infects one-third of the world’s population and kills 2 million people per year. According to the World Health Organization, which in 1993 declared TB a global emergency, an estimated 36 million people could die of TB by 2020 if the disease is not controlled.

The results were unexpected because prior studies pointed to the mce1 operon, the collection of genes that researchers disabled in the TB bacteria, as an important virulence factor that helped the organism invade cells. Researchers expected that mutating the mce1 genes would impair the pathogen’s ability to infect the mice. Instead, the bacteria became more deadly.

"This is one of the very few hypervirulent organisms ever created," said Lisa Morici, a lead author of the study who received her Ph.D. in infectious diseases from UC Berkeley in May. "This breaks a long-standing assumption among scientists that disabling a potential virulence gene weakens a pathogen."

Morici and Nobuyuki Shimono, assistant professor of medicine at Kyushu University’s Graduate School of Medical Sciences in Japan, are co-lead authors of the paper.

The researchers point out that even though the virulent strain of TB bacteria can be grown in a lab, it is not a likely candidate for use as a biological weapon. "Mycobacterium tuberculosis grows extremely slowly, is hard to aerosolize and, if it is not in a dormant stage, can be treated with antibiotics," said Morici, who is now a post-doctoral fellow at Tulane University’s School of Medicine. "There are several other virulent organisms out there that are easier to manipulate than TB."

The researchers compared the spleens, livers and lungs of mice at various time points throughout the experiment, from 24 hours to 41 weeks after infection. They found that the progression of the unmodified TB strain hit a plateau about 17 weeks after infection, while the mce1 mutated TB strain didn’t stop spreading until it killed its host.

The researchers also compared the reactions to normal and mutated forms of bacillus Calmette-Guérin (BCG), a weakened version of the TB bacteria that triggers an immune response but does not lead to disease.

They found that in the unmodified strains of both the TB bacteria and the BCG groups, there were well-defined granulomas, clusters of immune cells that surround TB bacteria to keep it in check. The researchers noticed that granulomas had not formed properly in the mutated strains of both the TB bacteria and the BCG groups.

The differences suggest that the mce1 gene mutations led to changes in the TB bacteria that impacted the host’s own immune response. "It appears that the host immune system does not recognize the mutated TB organisms, so the bacteria are left to grow unchecked," said Morici.

While the body typically summons granulomas to keep the TB bacteria from spreading and developing into an active infection, it does not completely eliminate the bug. When encased by granulomas, the bacteria move into a dormant, asymptomatic stage. It is when they sense a change in the host’s immune system, caused by such factors as the onset of diseases including AIDS, diabetes or cancer, that they begin to multiply again and cause the active TB disease.

"What we have learned is that the granuloma shield not only protects the host, it also protects the TB bacteria from the host’s other immune cells and antibiotic drugs that may otherwise kill the bacteria," said Shimono.

"The hallmark of the TB bacterium is its ability to stay dormant in a person’s body for years, making it one of the most successful bacteria around," said Riley. "Even if we could treat all the people now with active infection, we’d never be able to wipe out TB entirely because 60 percent of the people exposed to TB develop latent infections. TB is very difficult to treat not because it kills people rapidly, but because it stays dormant. By understanding the mechanism behind latency, we may also be able to develop new diagnostic tests to predict who will develop the active disease."

Other co-authors of the paper are Nicola Casali, Sally Cantrell and Ben Sidders at UC Berkeley’s School of Public Health; and Sabine Ehrt at Cornell University’s Weill Medical College.

The National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, supported this study.

Sarah Yang | UC Berkeley
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>