Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers publish Circumpolar Arctic Vegetation Map

09.12.2003


First map of an entire global biome at useable level of detail



Researchers publish vegetation map of the Arctic Tundra Biome

Institute of Arctic Biology (IAB) researcher Donald (Skip) Walker and an international team of Arctic vegetation scientists have published the Circumpolar Arctic Vegetation Map (CAVM) – the first map of an entire global biome at such a level of detail.


The 11-year CAVM project, directed by Walker, who also heads IAB’s Alaska Geobotany Center at the University of Alaska Fairbanks, involved vegetation scientists representing the six countries of the Arctic - Canada, Greenland, Iceland, Norway, Russia, and the United States - to map the vegetation and associated characteristics of the circumpolar region, using a common base map.

"A vegetation map of the Arctic is especially needed now because the Arctic is increasingly recognized as a single geoecosystem with a common set of cultural, political, economic, and ecological issues. Accelerated land-use change and climate change in the Arctic made the effort more urgent," Walker said.

The base map is a false-color infrared image created from Advanced Very High Resolution Radiometer (AVHRR) satellite data. The map covers the Arctic bioclimate subzone - the region north of the Arctic tree line, with an arctic climate, arctic flora, and tundra vegetation. The map can be viewed on the Web at http://www.geobotany.uaf.edu/cavm/.

The 3-foot by 4-foot, waterproof, tear-proof, field-work-worthy, synthetic-paper map is as beautiful as it is useful. The front of the map shows the circumpolar Arctic color-coded according to the outward appearance of the vegetation and includes color photographs of the various units. The back of the map includes detailed vegetative descriptions, a brief history of the map’s origin, and maps of the bioclimate subzones, floristic provinces, landscapes, percent lake cover, substrate pH, and plant biomass.

Previous maps presented a "disjointed picture of Arctic vegetation, because they were produced using a wide variety of national mapping traditions, legend systems, and map scales," Walker said. The CAVM "is the first to cover the entire Arctic at a reasonable level of detail using a common legend approach. In fact, it is the first map of an entire global biome at such a level of detail."

"I think vegetation scientists and people involved in global (climate) change will be the most excited" about the map, Stephen S. Talbot, research scientist with the United States Fish and Wildlife Service in Anchorage, Alaska and member of the CAVM mapping team, said.

"From a conservation perspective, although not so much in Alaska where we have established set-aside lands, but for other countries, especially Russia, this (map) is really critical for selecting areas based on vegetation to be set aside as critical areas," Talbot said.

"For me, one of the important things is that this (map) can be used as an important component of high school education, a tool for students," Talbot said. Students in Kotzebue can use the map to see how their environment is similar to or different from other Arctic environments. "It gives them a chance to see where they fit into the bigger picture."


The CAVM project was funded by the National Science Foundation, the U.S. Fish and Wildlife Service, the U.S. Geological Survey, and the U.S. Bureau of Land Management.

Marie Gilbert | EurekAlert!
Further information:
http://www.geobotany.uaf.edu/cavm/
http://www.uaf.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>