Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers publish Circumpolar Arctic Vegetation Map

09.12.2003


First map of an entire global biome at useable level of detail



Researchers publish vegetation map of the Arctic Tundra Biome

Institute of Arctic Biology (IAB) researcher Donald (Skip) Walker and an international team of Arctic vegetation scientists have published the Circumpolar Arctic Vegetation Map (CAVM) – the first map of an entire global biome at such a level of detail.


The 11-year CAVM project, directed by Walker, who also heads IAB’s Alaska Geobotany Center at the University of Alaska Fairbanks, involved vegetation scientists representing the six countries of the Arctic - Canada, Greenland, Iceland, Norway, Russia, and the United States - to map the vegetation and associated characteristics of the circumpolar region, using a common base map.

"A vegetation map of the Arctic is especially needed now because the Arctic is increasingly recognized as a single geoecosystem with a common set of cultural, political, economic, and ecological issues. Accelerated land-use change and climate change in the Arctic made the effort more urgent," Walker said.

The base map is a false-color infrared image created from Advanced Very High Resolution Radiometer (AVHRR) satellite data. The map covers the Arctic bioclimate subzone - the region north of the Arctic tree line, with an arctic climate, arctic flora, and tundra vegetation. The map can be viewed on the Web at http://www.geobotany.uaf.edu/cavm/.

The 3-foot by 4-foot, waterproof, tear-proof, field-work-worthy, synthetic-paper map is as beautiful as it is useful. The front of the map shows the circumpolar Arctic color-coded according to the outward appearance of the vegetation and includes color photographs of the various units. The back of the map includes detailed vegetative descriptions, a brief history of the map’s origin, and maps of the bioclimate subzones, floristic provinces, landscapes, percent lake cover, substrate pH, and plant biomass.

Previous maps presented a "disjointed picture of Arctic vegetation, because they were produced using a wide variety of national mapping traditions, legend systems, and map scales," Walker said. The CAVM "is the first to cover the entire Arctic at a reasonable level of detail using a common legend approach. In fact, it is the first map of an entire global biome at such a level of detail."

"I think vegetation scientists and people involved in global (climate) change will be the most excited" about the map, Stephen S. Talbot, research scientist with the United States Fish and Wildlife Service in Anchorage, Alaska and member of the CAVM mapping team, said.

"From a conservation perspective, although not so much in Alaska where we have established set-aside lands, but for other countries, especially Russia, this (map) is really critical for selecting areas based on vegetation to be set aside as critical areas," Talbot said.

"For me, one of the important things is that this (map) can be used as an important component of high school education, a tool for students," Talbot said. Students in Kotzebue can use the map to see how their environment is similar to or different from other Arctic environments. "It gives them a chance to see where they fit into the bigger picture."


The CAVM project was funded by the National Science Foundation, the U.S. Fish and Wildlife Service, the U.S. Geological Survey, and the U.S. Bureau of Land Management.

Marie Gilbert | EurekAlert!
Further information:
http://www.geobotany.uaf.edu/cavm/
http://www.uaf.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>