Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly identified genes may help predict outcome in childhood leukemia

08.12.2003


The measurement of new genes at diagnosis in children with acute lymphoblastic leukemia (ALL), discovered through new technologies from the human genome project, may be highly predictive of therapeutic outcomes, according to a study presented today during the 45th Annual Meeting of the American Society of Hematology (ASH). OPAL 1 (Outcome Predictor in Acute Leukemia 1), a novel, fully cloned human gene, and additional newly identified genes, have a strong predictive power to identify patients who may achieve remission or fail current therapeutic regimens for pediatric ALL, allowing physicians to tailor therapies more effectively to individual children with leukemia.



Study results showed that 87 percent of the patients with ALL and high OPAL 1 achieved long-term remission, compared to an overall outcome of 32 percent of all patients studied. OPAL1 was also highly predictive of a favorable outcome in T-cell ALL, and a similar trend was observed in infant ALL. Low OPAL1 was associated with induction failure, while high OPAL1 was associated with long-term event free survival, particularly in males. Eighty-six percent of ALL cases with t(12;21), which has prognostic value in ALL, and high OPAL1 achieved long term remission compared to only 35 percent of t(12;21) cases with low OPAL1, suggesting that OPAL1 may be useful in prospectively identifying children who may benefit from further intensification.

"Our study confirms that gene expression profiling can yield novel genes that may be used to improve risk classification and outcome prediction in acute leukemia in children," said Cheryl L. Willman, M.D., of the University of New Mexico Health Sciences Center, Albuquerque, N.M., senior author of the study. "Improving risk classification schemes in order to precisely tailor treatment regimens to individual patients has long been a major challenge for pediatric ALL, and is a goal of the National Children’s Oncology Group and the National Cancer Institute, which have supported our work. We believe that our research brings us closer to achieving this goal."


Current treatments, usually combination chemotherapy and post-induction therapeutic intensification (increasingly stronger treatment administered after initial therapy), currently help 75 percent of children with ALL achieve long-term remission. Yet, 25 percent of patients relapse with resistant disease. Additionally, 25 percent of patients who receive dose intensification treatment are often over-treated and may be cured using less intensive regimens with fewer acute and long-term side effects.

To identify strongly predictive genes, researchers performed gene expression profiling in two large, statistically designed, retrospective groups of pediatric ALL patients registered to trials previously conducted by the Pediatric Oncology Group (now merged with other national groups into the Children’s Oncology Group) – a group of 127 infant leukemia patients and a case control study of 254 children with B-precursor and T-cell ALL. Researchers used unsupervised learning tools and supervised machine learning algorithms to identify novel genes that were predictive of outcomes. Three strong genes were identified with both testing methods – G0, an expressed sequence tag of previously unknown function; G1:GNB2L1, a G-protein (a second messenger receptor of intracellular response) and activator of protein kinase C, which plays a pivotal role in cell signaling systems; and G2, an interleukin (IL)-10 receptor alpha, which regulates immune and inflammatory response. ALL cases expressing higher levels of these genes were associated with better outcomes. As the group fully cloned and characterized the G0 expressed sequence tag, it was given the new name of OPAL1.

"Studies to profile gene expressions in cancers like leukemia are very timely because physicians still need to better predict therapeutic responses," said Ronald Hoffman, M.D., President of the American Society of Hematology. "While we can already use a combination of chemotherapy and post-therapeutic treatments to help most children with ALL achieve remission, it is still difficult to know which patients will experience a relapse in the disease when they become resistant to the therapy. Hopefully the identification of new genes will help hematologists more accurately treat patients."

Leukemia is a cancer of the white blood cells that starts in the bone marrow and spreads to the blood, lymph nodes, and other organs. Both children and adults can develop leukemia, which is a complex disease with many different types and sub-types. The kind of treatment given and the outlook for childhood leukemia vary greatly according to the exact type and other individual factors. In acute leukemia the cells grow rapidly and are not able to mature properly. According to the National Cancer Institute, the vast majority of children diagnosed with leukemia have an acute form of the disease. Leukemias account for more than 30 percent of childhood cancers in children younger than 15 years old; three-fourths of those cases are ALL. The disease is not known as an inherited type, but there is evidence that it tends to cluster in families with high incidences of cancer.


###
The American Society of Hematology is the world’s largest professional society concerned with the causes and treatment of blood disorders. Its mission is to further the understanding, diagnosis, treatment, and prevention of disorders affecting blood, bone marrow, and the immunologic, hemostatic, and vascular systems, by promoting research, clinical care, education, training, and advocacy in hematology.

Aimee Frank | EurekAlert!
Further information:
http://www.hematology.org/

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>