Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Area Identified That Weighs Rewards

05.12.2003


Michael L. Platt, MD


By studying how monkeys choose to look at lighted targets for juice rewards, neurobiologists have identified a still-mysterious region of the cerebral cortex as an area that judges the value of rewards, and adjusts that value as circumstances change.

The finding adds a significant piece to the puzzle of how the brain is wired to make judgments, perhaps even moral judgments, about the outside world, said the researchers. The findings may also have implications for understanding a number of neurological disorders, said the scientists. Damage to the area the researchers studied -- called the posterior cingulate cortex -- has been linked to cognitive decline in Alzheimer’s disease, as well as pathologies of stroke, obsessive-compulsive disorder, schizophrenia and spatial disorientation.

The researchers, led by Michael Platt, Ph.D., Duke University Medical Center assistant professor of neurobiology, published their findings in the Dec. 4, 2003, issue of the journal Neuron. Other authors on the paper were joint lead authors Allison McCoy of Duke and Justin Crowley, Ph.D., of Carnegie Mellon University; and Golnaz Haghighian and Heather Dean of Duke.



"Even though the posterior cingulate cortex is a large structure in the brain that is easily identifiable in all mammals, including humans, almost nothing was known about what it might do," said Platt. "Anatomical studies show that it is kind of a nexus of brain circuitry involved in motivational or emotional inputs from the limbic system. And it is strongly connected to structures involved in making decisions and generating responses. So, we theorized that it seemed to be important for somehow putting together the costs and benefits associated with different options in an animal’s environment."

The researchers chose to study the role of the posterior cingulate cortex in making decisions about eye movement, because the visual system and the neural control of the eye muscles is very well understood, said Platt. So, they devised an experimental procedure in which monkeys would be asked to shift their gaze to one of a vast array of lighted diodes, in return for a fruit juice reward. At the same time, the researchers would monitor electrical activity in the neurons of the posterior cingulate cortex.

"We were trying to find those circuits that seem to associate motivational outcomes or emotional outcomes with the actions or the stimuli that produced them," said Platt. "So, once we had mapped the regions of the posterior cingulate cortex that responded to specific regions of visual space, we wanted to find out whether these neurons were representing how valuable movements to that region of space were.

"We manipulated how much fruit juice a monkey got for making particular eye movements, and we found a direct linear relationship between how strongly these neurons fired and the amount of fruit juice that was delivered," said Platt.

"And what really distinguishes the response of these neurons in the posterior cingulate cortex from other brain regions that respond to rewards is that these neurons not only respond just after the monkey makes an eye movement, but after the reward as well," he emphasized. "So, we’re arguing that the first response represents a prediction of what the monkey expects the outcome to be, and the second response reflects what the outcome really was. And these are exactly the kinds of signals you would expect if the brain region was functioning to update and learn the value of different options."

Such a brain region would be determining what neurobiologists term a "reward-prediction" error -- a comparison of a predicted with an actual reward. To demonstrate the cingulate cortex was doing just this, the researchers performed trials in which they did not give the monkey a juice reward on every trial.

"When the monkey expected a reward and didn’t get it, we found that these neurons would fire very strongly following the time when the monkey would normally expect a reward," Platt said. "So, we believe that firing meant that the neurons were registering a large reward-prediction error, and that this error would influence both neuronal activity and looking behavior on the next trial. Sure enough, it did," he said.

"And so, the posterior cingulate cortex seems to be -- at least, for visuospatial orienting -- putting together these signals of reward-prediction error with looking to the part of space that was connected with that reward," he concluded.

According to Platt, the latest findings could yield new insight into the function of the posterior cingulate cortex in neurological disorders. Since the region is known to be affected in Alzheimer’s disease, obsessive-compulsive disorder and schizophrenia, further study could reveal underlying mechanisms for pathologies in this disease, he said.

"It has been observed that damage to this area can cause disturbances in spatial perception," Platt said. "Such damage can sometimes cause the kind of ’neglect’ of a visual area that you see in stroke patients who don’t perceive things on one side or the other of their visual field.

"One hypothesis that this research raises is that what’s happening in such cases is that there’s no motivational significance or emotional significance to that part of the visual world. It has become meaningless to the patient, because the posterior cingulate cortex is imbuing that part of the visual world with significance. Similarly, an inability to learn the motivational significance of new locations may be responsible for patients with degeneration of posterior cingulate cortex getting lost in new environments."

Also, said Platt, although he and his colleagues used eye movement as their experimental indicator of response, the posterior cingulate cortex has been linked to control of other muscle movements, suggesting that it plays a broader role in decision-making about actions.

Further studies will aim at understanding the neural machinery of the posterior cingulate cortex in greater detail, said Platt. For example, by precisely stimulating neurons in the region at different points in the judgment process, the researchers hope to determine whether they can affect the ability of a monkey to choose the right eye movements to receive a reward.

Also, he said, the researchers will seek to expand their understanding of the brain region, to determine whether it is involved in broader moral judgments and social reasoning—a possibility suggested by recent neuroimaging studies in humans.

"We’ll have to be very clever in these experiments," said Platt. "After all, what is moral judgment for a monkey? So, we’ll have to develop a way to measure whether a monkey perceives another violating a social norm, for example, and determine whether the posterior cingulate cortex is involved in that perception.

Dennis Meredith | dukemed news
Further information:
http://dukemednews.org/news/article.php?id=7266

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>