Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Easily paralyzed flies provide clues to neurodegeneration

05.12.2003


With a slight tweak of temperature, geneticist Barry Ganetzky’s flies drop like, well, flies.



For 25 years, Ganetzky has been identifying, breeding and studying a raft of fly mutants that, when exposed to minor temperature change, become completely paralyzed. The flies, which quickly recover when returned to room temperature, are now finding many uses in studies of human neurological disorders, drug discovery and insecticide development.

Ganetzky, a University of Wisconsin-Madison professor of genetics, and his colleagues have become the undisputed champions of finding such mutants, raising the tally to upward of 100 such strains over the years.


"At room temperature, they are almost indistinguishable from normal flies," says Ganetzky of the genetic variants of the fly species Drosophila melanogaster, a workhorse of modern genetics and molecular biology. But if you expose them to slightly elevated temperatures in the range of human body temperature, "in less than 10 seconds, some mutants are completely paralyzed. Others become totally incapacitated by convulsive seizures. It’s like flipping a switch. All we change is one variable - temperature."

The effect is a rapid loss of normal motor activity.

Such a handy model, Ganetzky explains, has tremendous potential for studies of disorders such as epilepsy, muscular dystrophies and a range of other neuromuscular disorders. What’s more, the flies promise a window to identifying genes - many of which have human counterparts - involved in neural function and disease.

"Because the molecular mechanisms of neural function are highly conserved, whatever we learn from studying flies is likely to have important implications for humans as well," says Ganetzky.

The flies’ sensitivity to temperature provides a unique ability to control the onset of their physiological defects, and is useful in helping researchers identify specific genes that may be involved in regulating how brain cells function.

For instance, molecular analysis of one of their mutants enabled Ganetzky’s group to identify and clone a gene that encodes sodium-channel proteins in brain cells. The influx of sodium ions into brain cells through sodium channels is the essential step in generating nerve impulses.

The isolation of the fly sodium-channel gene has spurred research on insecticide development because sodium channels are key targets of commonly used insecticides, and resistance to these insecticides is often associated with mutations of this gene. Using the Drosophila gene as a probe, other labs have now cloned the corresponding genes in many other insects, including such major pests as cockroaches and mosquitoes.

Moreover, the type of ion channel deficiencies found in some of Ganetzky’s fly mutants manifest themselves in humans suffering from such afflictions as epilepsy and cardiac arrhythmias.

"Each fly (mutant) is a door or a window into some biological activity I want to understand," Ganetzky notes. "When those activities are perturbed because of a mutation, the mutant flies become paralyzed at elevated temperatures. Disruption of the same or similar functions in humans could also produce some type of disease manifestation. As a result, these mutants potentially give us some insight into these disorders."

As one example, Ganetzky’s group discovered and cloned a human gene known as Herg. That gene was the counterpart to one of the fly genes identified among their many mutants. In humans, mutations of Herg cause a cardiac arrhythmia that can result in ventricular fibrillation and sudden death. Dozens of labs worldwide are now investigating Herg and the potassium channel protein it encodes.

Such discoveries have engendered significant interest on the part of the pharmaceutical industry. For instance, in the United States all drugs now headed to market must be screened to ensure that they do not perturb the function of Herg channels and possibly cause heart problems in patients. The tendency to affect such channels was the reason that Seldane, a popular asthma medication, was pulled from the market.

Adding to the mutant flies’ cachet, recent work by Ganetzky and post-doctoral fellow Michael Palladino showed that some of the mutants in their collection undergo progressive, age-dependent neurodegeneration resulting in the widespread death of brain cells.

"The neuropathology observed in these mutants is very reminiscent of that in human disorders such as Alzheimer’s disease and Parkinson’s disease," says Ganetzky. "Such disorders are a growing human health concern, but the underlying cellular mechanisms are still poorly understood. These mutants should provide us with valuable new insights into the molecular basis of neurodegeneration in both flies and humans."

Ganetzky believes his collection of fly models, which has been licensed by the Wisconsin Alumni Research Foundation, could become a rich resource to help pharmaceutical companies identify new biological targets and develop new high-volume screens for drug development.

"I think the mutants have real value to give us novel information about neural disorders and human disease," Ganetzky asserts. "We can’t even begin to guess what new insight might be lurking in these flies."


###
Terry Devitt 608-262-8282, trdevitt@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>