Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Easily paralyzed flies provide clues to neurodegeneration

05.12.2003


With a slight tweak of temperature, geneticist Barry Ganetzky’s flies drop like, well, flies.



For 25 years, Ganetzky has been identifying, breeding and studying a raft of fly mutants that, when exposed to minor temperature change, become completely paralyzed. The flies, which quickly recover when returned to room temperature, are now finding many uses in studies of human neurological disorders, drug discovery and insecticide development.

Ganetzky, a University of Wisconsin-Madison professor of genetics, and his colleagues have become the undisputed champions of finding such mutants, raising the tally to upward of 100 such strains over the years.


"At room temperature, they are almost indistinguishable from normal flies," says Ganetzky of the genetic variants of the fly species Drosophila melanogaster, a workhorse of modern genetics and molecular biology. But if you expose them to slightly elevated temperatures in the range of human body temperature, "in less than 10 seconds, some mutants are completely paralyzed. Others become totally incapacitated by convulsive seizures. It’s like flipping a switch. All we change is one variable - temperature."

The effect is a rapid loss of normal motor activity.

Such a handy model, Ganetzky explains, has tremendous potential for studies of disorders such as epilepsy, muscular dystrophies and a range of other neuromuscular disorders. What’s more, the flies promise a window to identifying genes - many of which have human counterparts - involved in neural function and disease.

"Because the molecular mechanisms of neural function are highly conserved, whatever we learn from studying flies is likely to have important implications for humans as well," says Ganetzky.

The flies’ sensitivity to temperature provides a unique ability to control the onset of their physiological defects, and is useful in helping researchers identify specific genes that may be involved in regulating how brain cells function.

For instance, molecular analysis of one of their mutants enabled Ganetzky’s group to identify and clone a gene that encodes sodium-channel proteins in brain cells. The influx of sodium ions into brain cells through sodium channels is the essential step in generating nerve impulses.

The isolation of the fly sodium-channel gene has spurred research on insecticide development because sodium channels are key targets of commonly used insecticides, and resistance to these insecticides is often associated with mutations of this gene. Using the Drosophila gene as a probe, other labs have now cloned the corresponding genes in many other insects, including such major pests as cockroaches and mosquitoes.

Moreover, the type of ion channel deficiencies found in some of Ganetzky’s fly mutants manifest themselves in humans suffering from such afflictions as epilepsy and cardiac arrhythmias.

"Each fly (mutant) is a door or a window into some biological activity I want to understand," Ganetzky notes. "When those activities are perturbed because of a mutation, the mutant flies become paralyzed at elevated temperatures. Disruption of the same or similar functions in humans could also produce some type of disease manifestation. As a result, these mutants potentially give us some insight into these disorders."

As one example, Ganetzky’s group discovered and cloned a human gene known as Herg. That gene was the counterpart to one of the fly genes identified among their many mutants. In humans, mutations of Herg cause a cardiac arrhythmia that can result in ventricular fibrillation and sudden death. Dozens of labs worldwide are now investigating Herg and the potassium channel protein it encodes.

Such discoveries have engendered significant interest on the part of the pharmaceutical industry. For instance, in the United States all drugs now headed to market must be screened to ensure that they do not perturb the function of Herg channels and possibly cause heart problems in patients. The tendency to affect such channels was the reason that Seldane, a popular asthma medication, was pulled from the market.

Adding to the mutant flies’ cachet, recent work by Ganetzky and post-doctoral fellow Michael Palladino showed that some of the mutants in their collection undergo progressive, age-dependent neurodegeneration resulting in the widespread death of brain cells.

"The neuropathology observed in these mutants is very reminiscent of that in human disorders such as Alzheimer’s disease and Parkinson’s disease," says Ganetzky. "Such disorders are a growing human health concern, but the underlying cellular mechanisms are still poorly understood. These mutants should provide us with valuable new insights into the molecular basis of neurodegeneration in both flies and humans."

Ganetzky believes his collection of fly models, which has been licensed by the Wisconsin Alumni Research Foundation, could become a rich resource to help pharmaceutical companies identify new biological targets and develop new high-volume screens for drug development.

"I think the mutants have real value to give us novel information about neural disorders and human disease," Ganetzky asserts. "We can’t even begin to guess what new insight might be lurking in these flies."


###
Terry Devitt 608-262-8282, trdevitt@wisc.edu

Terry Devitt | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>