Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Growth hormone activates gene involved in healing damaged tissue

04.12.2003


Growth hormone is known to increase lean body mass and bone density in the elderly, but it does something else, too.

It activates a gene critical for the body’s tissues to heal and regenerate, says Robert Costa, professor of biochemistry and molecular genetics at the University of Illinois at Chicago and a member of the UIC Cancer Center.

That discovery could help explain why we age.



"Growth hormone levels decline as we grow older; as a result, the Foxm1b gene stops working and our bodies are less capable of repairing damage," Costa said.

In a paper published in the December issue of Hepatology, Costa and his colleagues report the results of studies on liver regeneration in aged (12-month-old) and young (2-month-old) mice -- a model system for studying the molecular mechanisms the body enlists to restore tissue damaged by injury or age. The liver is the only organ in the body capable of completely regenerating from mature cells.

The scientists focused on the Foxm1b gene, which is involved in the entire life cycle of the mammalian cell -- its proliferation, maturation and death. The gene’s activity is elevated in dividing cells in young mammals but diminishes in old age.

In previous studies, the researchers inserted the human Foxm1b gene in aged mice whose livers had been partially removed (the two species have virtually identical forms of the gene). The experiments showed that the gene restored levels of Foxm1b proteins and induced the animals’ livers to grow back at a rate typical of young mice. Further research detailed how the gene directs the busy molecular traffic inside cells to make them divide and multiply.

In the present study, the scientists tested the effects of human growth hormone because of its purported role in stimulating cell proliferation. Growth hormone, a substance secreted by the pituitary gland in the brain, is responsible for growth in children and young adults, but its levels decline during aging.

"The literature had suggested that growth hormone therapy in elderly men stimulates cells to divide," said Costa, leading to increases in muscle mass and skin thickness and greater bone density in the spine, while decreasing body fat.

"We wanted to find out how the hormone worked at a molecular level."

When aged mice whose livers had been partially removed were injected with human growth hormone, histological and other tests showed that the activity of the Foxm1b gene increased dramatically, as did levels of various enzymes and proteins that cause cells to divide. At the same time, the livers of these animals regenerated at a pace found in young mice. Cell proliferation peaked at just two days, and the liver was fully restored within a week.

By comparison, in aged mice that did not receive hormone injections, complete regeneration took a month or longer. Without growth hormone to turn on Foxm1b, the gene remained stuck at the low level of activity found in old age, and liver cells failed to multiply rapidly enough for a quick recovery.

Further tests were done with genetically engineered mice in whose liver cells the Foxm1b gene had been disabled. In these mice, growth hormone injections failed to stimulate recovery when the liver was partially removed.

"These results clearly demonstrate that Foxm1b is essential for growth hormone to spur liver regeneration," Costa said.

The study is apt to provide impetus for high-end clinics and spas already offering growth hormone injections to "treat" old age, but Costa is cautious about drawing any conclusions from his research about the merits of the therapy.

"Our liver regeneration studies tell us a great deal about how growth hormone works at a molecular level, but the injections occurred only over short periods of time, giving us no information about any long-term consequences," Costa said.

While several studies have shown that prolonged growth hormone therapy has dangerous side effects ranging from diabetes to carpal tunnel syndrome, Costa believes that short-term treatment with growth hormone could be used to speed repair after injuries or surgery in the elderly, shortening recovery time.


###
The National Institute of Diabetes and Digestive and Kidney Diseases and the National Institute on Aging provided funding for the study. Other UIC scientists involved in the research were Katherine Krupczak-Hollis, Xinhe Wang and Margaret Dennewitz.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>