Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings offer clue to how molecule can both stimulate, suppress cell growth

04.12.2003


Study provides insight into role of TGF-beta in cancer development, progression



Scientists are puzzled by the fact that the molecule known as transforming growth factor-beta (TGF-b) generally stops cells from multiplying but at other times promotes cell growth.

Dr. Hal Moses, director of the Vanderbilt-Ingram Cancer Center, and his lab identified TGF-b in 1985 as both a growth stimulator and growth suppressor. Since that time, its role in colon, breast and other cancers has been studied extensively at Vanderbilt and elsewhere.


Now a team of researchers at Vanderbilt-Ingram has found a clue to the seemingly contradictory biological actions of TGF-b. Their findings are published online this week by the Proceedings of the National Academy of Science (www.pnas.org) and is expected to appear in the print version later this month.

"TGF-b usually causes cell growth inhibition; however, many solid tumors over-express TGF-b and the cells aren’t inhibited at all – in fact, sometimes they grow faster than normal as a result of TGF-b signaling," said Neil A. Bhowmick, Ph.D., assistant professor of Urologic Surgery and senior author on the paper. "Many researchers have studied the ways in which TGF-b suppresses cell growth but not many have examined how it promotes cell growth."

The researchers studied normal cells lines whose growth was inhibited by TGF-b -- the process was working properly – as well as cell lines whose growth was stimulated by TGF-b.

TGF-b uses multiple signaling pathways to get its instructions to the cell’s nucleus – at least four pathways that are known, and there are probably more, Bhowmick said.

In the inhibited cells, the researchers removed particular protein components in one of these known TGF-b signaling pathways called Rho-ROCK. The cells were no longer inhibited and instead began growing again.

Then they did the opposite, adding the protein components to cells whose growth was being stimulated by TGF-b to see if their growth would be arrested again – that is, if normal TGF-b function would be restored by restoring the pathway. "Lo and behold, that’s exactly what happened," Bhowmick said.

The findings suggest that the Rho-ROCK signaling pathway, traditionally known for its involvement in cell differentiation and defining cell shape, plays a key role in TGF-b inhibition of cell growth. "Perhaps inactivation of this pathway is a way that cancer cells override the normal growth-suppressing activity of TGF-b," Bhowmick said.

More work is needed to fully understand the implications, but the findings also suggest a potential target for therapeutic intervention to restore TGF-b’s ability to inhibit cell growth, he said.

Bhowmick’s co-authors on the paper were Mayshan Ghiassi, Mary Aakre, Kimberly Brown, Vikas Singh and Moses, members of the department of Cancer Biology and the Frances Williams Preston Laboratories, supported by the T.J. Martell Foundation at Vanderbilt-Ingram.


The work was supported by the U.S. Department of Defense, the National Cancer Institute and the Vanderbilt-Ingram Cancer Center.

The Vanderbilt-Ingram Cancer Center is the only National Cancer Institute-designated Comprehensive Cancer Center in Tennessee and one of only 38 in the United States. This designation is the highest awarded by the NCI, one of the National Institutes of Health and world’s foremost authority on cancer. It recognizes excellence in all aspects of cancer research, the development of innovative new therapies and a demonstrated commitment to the community through education, information and outreach. For more information, visit www.vicc.org.

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.vicc.org

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>