Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Findings offer clue to how molecule can both stimulate, suppress cell growth

04.12.2003


Study provides insight into role of TGF-beta in cancer development, progression



Scientists are puzzled by the fact that the molecule known as transforming growth factor-beta (TGF-b) generally stops cells from multiplying but at other times promotes cell growth.

Dr. Hal Moses, director of the Vanderbilt-Ingram Cancer Center, and his lab identified TGF-b in 1985 as both a growth stimulator and growth suppressor. Since that time, its role in colon, breast and other cancers has been studied extensively at Vanderbilt and elsewhere.


Now a team of researchers at Vanderbilt-Ingram has found a clue to the seemingly contradictory biological actions of TGF-b. Their findings are published online this week by the Proceedings of the National Academy of Science (www.pnas.org) and is expected to appear in the print version later this month.

"TGF-b usually causes cell growth inhibition; however, many solid tumors over-express TGF-b and the cells aren’t inhibited at all – in fact, sometimes they grow faster than normal as a result of TGF-b signaling," said Neil A. Bhowmick, Ph.D., assistant professor of Urologic Surgery and senior author on the paper. "Many researchers have studied the ways in which TGF-b suppresses cell growth but not many have examined how it promotes cell growth."

The researchers studied normal cells lines whose growth was inhibited by TGF-b -- the process was working properly – as well as cell lines whose growth was stimulated by TGF-b.

TGF-b uses multiple signaling pathways to get its instructions to the cell’s nucleus – at least four pathways that are known, and there are probably more, Bhowmick said.

In the inhibited cells, the researchers removed particular protein components in one of these known TGF-b signaling pathways called Rho-ROCK. The cells were no longer inhibited and instead began growing again.

Then they did the opposite, adding the protein components to cells whose growth was being stimulated by TGF-b to see if their growth would be arrested again – that is, if normal TGF-b function would be restored by restoring the pathway. "Lo and behold, that’s exactly what happened," Bhowmick said.

The findings suggest that the Rho-ROCK signaling pathway, traditionally known for its involvement in cell differentiation and defining cell shape, plays a key role in TGF-b inhibition of cell growth. "Perhaps inactivation of this pathway is a way that cancer cells override the normal growth-suppressing activity of TGF-b," Bhowmick said.

More work is needed to fully understand the implications, but the findings also suggest a potential target for therapeutic intervention to restore TGF-b’s ability to inhibit cell growth, he said.

Bhowmick’s co-authors on the paper were Mayshan Ghiassi, Mary Aakre, Kimberly Brown, Vikas Singh and Moses, members of the department of Cancer Biology and the Frances Williams Preston Laboratories, supported by the T.J. Martell Foundation at Vanderbilt-Ingram.


The work was supported by the U.S. Department of Defense, the National Cancer Institute and the Vanderbilt-Ingram Cancer Center.

The Vanderbilt-Ingram Cancer Center is the only National Cancer Institute-designated Comprehensive Cancer Center in Tennessee and one of only 38 in the United States. This designation is the highest awarded by the NCI, one of the National Institutes of Health and world’s foremost authority on cancer. It recognizes excellence in all aspects of cancer research, the development of innovative new therapies and a demonstrated commitment to the community through education, information and outreach. For more information, visit www.vicc.org.

Cynthia Floyd Manley | EurekAlert!
Further information:
http://www.vicc.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>