Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With optical ’tweezers,’ researchers pinpoint the rhythmic rigidity of cell skeletons

04.12.2003


Laser tool makes it possible to study the interior of an endothelial cell in a non-invasive way



Endothelial cells, which line the body’s blood vessels and regulate the exchange of material between the blood stream and surrounding tissue, are one of the most closely studied types of cell in the body.

The cells play an important role in cardiovascular disease. And a greater knowledge of their interior functions may help scientists develop new cancer treatments that curb or suppress the growth of tumors by cutting off their blood supply.


Daniel Ou-Yang’s research group at Lehigh University is the first to use a laser tool known as optical tweezers to study the interior of an endothelial cell in a non-invasive way without introducing foreign particles into the cell or around it.

Achieving a resolution of 0.5 microns, Ou-Yang and his group can pinpoint and "trap" an organelle - a specialized part of a cell that resembles and functions like an organ - without damaging it.

They have discovered that the rigidity of the cytoskeleton, or cell skeleton, in the vicinity of the cell’s organelles, appears to change by a factor of four in a rhythmical pattern with a periodicity of 20 to 30 seconds.

"This rhythm tells us something is alive," says Ou-Yang, a professor of physics, co-director of Lehigh’s bioengineering program and a member of Lehigh’s Center for Optical Technologies. "But it raises other questions. What triggers this rhythm? And what is its significance?"

Ou-Yang is collaborating with Linda Lowe-Krentz, professor of biological sciences. He also works with Profs. Ivan Biaggio and Volkmar Dierolf of the physics department and the COT, who specialize in the advanced imaging techniques necessary to measure the intracellular molecular signals.

Dierolf incorporates Raman spectroscopy scattering to see molecules without labeling (dyeing) them. Biaggio measure the mechanical properties of cells using nonlinear optical effects, which generate ultrasound waves to measure mechanical properties.

The work of Ou-Yang, Biaggio and Dierolf is supported by the COT. Ou-Yang and Lowe-Krentz are seeking a grant from the National Science Foundation.

Ou-Yang’s group also includes several students. Meron Mengistu is a graduate student in molecular biology. Elizabeth Rickter, a graduate student in physics, was the first person to observe the rhythmic behaviors that appear to originate from endothelial cytoskeletons. And Laura Morkowchuk, a sophomore bioengineering major, is studying the effect of the cytoskeletal rhythm on the transport of proteins from the blood stream to a cell’s interior substrate tissues.

The overall goal of Ou-Yang’s group is to understand the mechanisms and functions of a cell in a quantitative way, and to map cell functions as scientists have already mapped such major body functions as respiration and digestion.

Ou-Yang has used optical tweezers in his research for more than 10 years, and is one of the pioneers in the technique. The tweezers, also called laser tweezers or optical traps, focus a laser beam through an optical microscope to trap micron-sized dielectric objects, which can then be manipulated by externally steering the laser beams.

Optical tweezers can pinpoint organelles at a resolution of 0.5 microns. The resulting vibration of the cell part is 0.5 nanometers, a measurement that Ou-Yang’s group makes with an innovative application of optical diffraction.

The researchers are interested in cytoskeletal rigidity for several reasons. The cytoskeleton plays an important role in cell division. If scientists can learn how to suppress the rearrangement of the cytoskeleton that is necessary for mitosis to occur, they might be able to obstruct the growth of cancerous tumors, which depends on the often runaway rate of mitosis in cancerous cells.

Cytoskeletal rigidity has also been observed as a response to the chemical treatments used on cancer patients, Ou-Yang says. And tumor growth can be choked by depriving cancer cells of their blood supply, which is regulated by endothelial cells.

Two other Lehigh students have contributed to Ou-Yang’s work with laser tweezers. Larry Hough, who received his Ph.D. in physics in August, is now a research scientist at the University of Pennsylvania. Megan Valentine, earned a B.S. in physics from Lehigh in 1996, recently completed a Ph.D. in physics at Harvard, and is going to Stanford to become a research scientist in biophysics.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>