Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With optical ’tweezers,’ researchers pinpoint the rhythmic rigidity of cell skeletons

04.12.2003


Laser tool makes it possible to study the interior of an endothelial cell in a non-invasive way



Endothelial cells, which line the body’s blood vessels and regulate the exchange of material between the blood stream and surrounding tissue, are one of the most closely studied types of cell in the body.

The cells play an important role in cardiovascular disease. And a greater knowledge of their interior functions may help scientists develop new cancer treatments that curb or suppress the growth of tumors by cutting off their blood supply.


Daniel Ou-Yang’s research group at Lehigh University is the first to use a laser tool known as optical tweezers to study the interior of an endothelial cell in a non-invasive way without introducing foreign particles into the cell or around it.

Achieving a resolution of 0.5 microns, Ou-Yang and his group can pinpoint and "trap" an organelle - a specialized part of a cell that resembles and functions like an organ - without damaging it.

They have discovered that the rigidity of the cytoskeleton, or cell skeleton, in the vicinity of the cell’s organelles, appears to change by a factor of four in a rhythmical pattern with a periodicity of 20 to 30 seconds.

"This rhythm tells us something is alive," says Ou-Yang, a professor of physics, co-director of Lehigh’s bioengineering program and a member of Lehigh’s Center for Optical Technologies. "But it raises other questions. What triggers this rhythm? And what is its significance?"

Ou-Yang is collaborating with Linda Lowe-Krentz, professor of biological sciences. He also works with Profs. Ivan Biaggio and Volkmar Dierolf of the physics department and the COT, who specialize in the advanced imaging techniques necessary to measure the intracellular molecular signals.

Dierolf incorporates Raman spectroscopy scattering to see molecules without labeling (dyeing) them. Biaggio measure the mechanical properties of cells using nonlinear optical effects, which generate ultrasound waves to measure mechanical properties.

The work of Ou-Yang, Biaggio and Dierolf is supported by the COT. Ou-Yang and Lowe-Krentz are seeking a grant from the National Science Foundation.

Ou-Yang’s group also includes several students. Meron Mengistu is a graduate student in molecular biology. Elizabeth Rickter, a graduate student in physics, was the first person to observe the rhythmic behaviors that appear to originate from endothelial cytoskeletons. And Laura Morkowchuk, a sophomore bioengineering major, is studying the effect of the cytoskeletal rhythm on the transport of proteins from the blood stream to a cell’s interior substrate tissues.

The overall goal of Ou-Yang’s group is to understand the mechanisms and functions of a cell in a quantitative way, and to map cell functions as scientists have already mapped such major body functions as respiration and digestion.

Ou-Yang has used optical tweezers in his research for more than 10 years, and is one of the pioneers in the technique. The tweezers, also called laser tweezers or optical traps, focus a laser beam through an optical microscope to trap micron-sized dielectric objects, which can then be manipulated by externally steering the laser beams.

Optical tweezers can pinpoint organelles at a resolution of 0.5 microns. The resulting vibration of the cell part is 0.5 nanometers, a measurement that Ou-Yang’s group makes with an innovative application of optical diffraction.

The researchers are interested in cytoskeletal rigidity for several reasons. The cytoskeleton plays an important role in cell division. If scientists can learn how to suppress the rearrangement of the cytoskeleton that is necessary for mitosis to occur, they might be able to obstruct the growth of cancerous tumors, which depends on the often runaway rate of mitosis in cancerous cells.

Cytoskeletal rigidity has also been observed as a response to the chemical treatments used on cancer patients, Ou-Yang says. And tumor growth can be choked by depriving cancer cells of their blood supply, which is regulated by endothelial cells.

Two other Lehigh students have contributed to Ou-Yang’s work with laser tweezers. Larry Hough, who received his Ph.D. in physics in August, is now a research scientist at the University of Pennsylvania. Megan Valentine, earned a B.S. in physics from Lehigh in 1996, recently completed a Ph.D. in physics at Harvard, and is going to Stanford to become a research scientist in biophysics.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>