Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


With optical ’tweezers,’ researchers pinpoint the rhythmic rigidity of cell skeletons


Laser tool makes it possible to study the interior of an endothelial cell in a non-invasive way

Endothelial cells, which line the body’s blood vessels and regulate the exchange of material between the blood stream and surrounding tissue, are one of the most closely studied types of cell in the body.

The cells play an important role in cardiovascular disease. And a greater knowledge of their interior functions may help scientists develop new cancer treatments that curb or suppress the growth of tumors by cutting off their blood supply.

Daniel Ou-Yang’s research group at Lehigh University is the first to use a laser tool known as optical tweezers to study the interior of an endothelial cell in a non-invasive way without introducing foreign particles into the cell or around it.

Achieving a resolution of 0.5 microns, Ou-Yang and his group can pinpoint and "trap" an organelle - a specialized part of a cell that resembles and functions like an organ - without damaging it.

They have discovered that the rigidity of the cytoskeleton, or cell skeleton, in the vicinity of the cell’s organelles, appears to change by a factor of four in a rhythmical pattern with a periodicity of 20 to 30 seconds.

"This rhythm tells us something is alive," says Ou-Yang, a professor of physics, co-director of Lehigh’s bioengineering program and a member of Lehigh’s Center for Optical Technologies. "But it raises other questions. What triggers this rhythm? And what is its significance?"

Ou-Yang is collaborating with Linda Lowe-Krentz, professor of biological sciences. He also works with Profs. Ivan Biaggio and Volkmar Dierolf of the physics department and the COT, who specialize in the advanced imaging techniques necessary to measure the intracellular molecular signals.

Dierolf incorporates Raman spectroscopy scattering to see molecules without labeling (dyeing) them. Biaggio measure the mechanical properties of cells using nonlinear optical effects, which generate ultrasound waves to measure mechanical properties.

The work of Ou-Yang, Biaggio and Dierolf is supported by the COT. Ou-Yang and Lowe-Krentz are seeking a grant from the National Science Foundation.

Ou-Yang’s group also includes several students. Meron Mengistu is a graduate student in molecular biology. Elizabeth Rickter, a graduate student in physics, was the first person to observe the rhythmic behaviors that appear to originate from endothelial cytoskeletons. And Laura Morkowchuk, a sophomore bioengineering major, is studying the effect of the cytoskeletal rhythm on the transport of proteins from the blood stream to a cell’s interior substrate tissues.

The overall goal of Ou-Yang’s group is to understand the mechanisms and functions of a cell in a quantitative way, and to map cell functions as scientists have already mapped such major body functions as respiration and digestion.

Ou-Yang has used optical tweezers in his research for more than 10 years, and is one of the pioneers in the technique. The tweezers, also called laser tweezers or optical traps, focus a laser beam through an optical microscope to trap micron-sized dielectric objects, which can then be manipulated by externally steering the laser beams.

Optical tweezers can pinpoint organelles at a resolution of 0.5 microns. The resulting vibration of the cell part is 0.5 nanometers, a measurement that Ou-Yang’s group makes with an innovative application of optical diffraction.

The researchers are interested in cytoskeletal rigidity for several reasons. The cytoskeleton plays an important role in cell division. If scientists can learn how to suppress the rearrangement of the cytoskeleton that is necessary for mitosis to occur, they might be able to obstruct the growth of cancerous tumors, which depends on the often runaway rate of mitosis in cancerous cells.

Cytoskeletal rigidity has also been observed as a response to the chemical treatments used on cancer patients, Ou-Yang says. And tumor growth can be choked by depriving cancer cells of their blood supply, which is regulated by endothelial cells.

Two other Lehigh students have contributed to Ou-Yang’s work with laser tweezers. Larry Hough, who received his Ph.D. in physics in August, is now a research scientist at the University of Pennsylvania. Megan Valentine, earned a B.S. in physics from Lehigh in 1996, recently completed a Ph.D. in physics at Harvard, and is going to Stanford to become a research scientist in biophysics.

Kurt Pfitzer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht New supercomputer simulations enhance understanding of protein motion and function
24.11.2015 | DOE/Oak Ridge National Laboratory

nachricht Sensor sees nerve action as it happens
24.11.2015 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Siemens Healthcare introduces the Cios family of mobile C-arms

20.10.2015 | Event News

Latest News

Siemens offers concrete solution portfolio for Industrie 4.0 with Digital Enterprise

24.11.2015 | Trade Fair News

Compact, rugged, three-phase power supplies for worldwide use

24.11.2015 | Trade Fair News

Sensor sees nerve action as it happens

24.11.2015 | Life Sciences

More VideoLinks >>>