Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

With optical ’tweezers,’ researchers pinpoint the rhythmic rigidity of cell skeletons

04.12.2003


Laser tool makes it possible to study the interior of an endothelial cell in a non-invasive way



Endothelial cells, which line the body’s blood vessels and regulate the exchange of material between the blood stream and surrounding tissue, are one of the most closely studied types of cell in the body.

The cells play an important role in cardiovascular disease. And a greater knowledge of their interior functions may help scientists develop new cancer treatments that curb or suppress the growth of tumors by cutting off their blood supply.


Daniel Ou-Yang’s research group at Lehigh University is the first to use a laser tool known as optical tweezers to study the interior of an endothelial cell in a non-invasive way without introducing foreign particles into the cell or around it.

Achieving a resolution of 0.5 microns, Ou-Yang and his group can pinpoint and "trap" an organelle - a specialized part of a cell that resembles and functions like an organ - without damaging it.

They have discovered that the rigidity of the cytoskeleton, or cell skeleton, in the vicinity of the cell’s organelles, appears to change by a factor of four in a rhythmical pattern with a periodicity of 20 to 30 seconds.

"This rhythm tells us something is alive," says Ou-Yang, a professor of physics, co-director of Lehigh’s bioengineering program and a member of Lehigh’s Center for Optical Technologies. "But it raises other questions. What triggers this rhythm? And what is its significance?"

Ou-Yang is collaborating with Linda Lowe-Krentz, professor of biological sciences. He also works with Profs. Ivan Biaggio and Volkmar Dierolf of the physics department and the COT, who specialize in the advanced imaging techniques necessary to measure the intracellular molecular signals.

Dierolf incorporates Raman spectroscopy scattering to see molecules without labeling (dyeing) them. Biaggio measure the mechanical properties of cells using nonlinear optical effects, which generate ultrasound waves to measure mechanical properties.

The work of Ou-Yang, Biaggio and Dierolf is supported by the COT. Ou-Yang and Lowe-Krentz are seeking a grant from the National Science Foundation.

Ou-Yang’s group also includes several students. Meron Mengistu is a graduate student in molecular biology. Elizabeth Rickter, a graduate student in physics, was the first person to observe the rhythmic behaviors that appear to originate from endothelial cytoskeletons. And Laura Morkowchuk, a sophomore bioengineering major, is studying the effect of the cytoskeletal rhythm on the transport of proteins from the blood stream to a cell’s interior substrate tissues.

The overall goal of Ou-Yang’s group is to understand the mechanisms and functions of a cell in a quantitative way, and to map cell functions as scientists have already mapped such major body functions as respiration and digestion.

Ou-Yang has used optical tweezers in his research for more than 10 years, and is one of the pioneers in the technique. The tweezers, also called laser tweezers or optical traps, focus a laser beam through an optical microscope to trap micron-sized dielectric objects, which can then be manipulated by externally steering the laser beams.

Optical tweezers can pinpoint organelles at a resolution of 0.5 microns. The resulting vibration of the cell part is 0.5 nanometers, a measurement that Ou-Yang’s group makes with an innovative application of optical diffraction.

The researchers are interested in cytoskeletal rigidity for several reasons. The cytoskeleton plays an important role in cell division. If scientists can learn how to suppress the rearrangement of the cytoskeleton that is necessary for mitosis to occur, they might be able to obstruct the growth of cancerous tumors, which depends on the often runaway rate of mitosis in cancerous cells.

Cytoskeletal rigidity has also been observed as a response to the chemical treatments used on cancer patients, Ou-Yang says. And tumor growth can be choked by depriving cancer cells of their blood supply, which is regulated by endothelial cells.

Two other Lehigh students have contributed to Ou-Yang’s work with laser tweezers. Larry Hough, who received his Ph.D. in physics in August, is now a research scientist at the University of Pennsylvania. Megan Valentine, earned a B.S. in physics from Lehigh in 1996, recently completed a Ph.D. in physics at Harvard, and is going to Stanford to become a research scientist in biophysics.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Life Sciences:

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>