Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers discover natural brain chemical reduces effects of cocaine

03.12.2003


Researchers led by Jason Jaworski, PhD, and Michael Kuhar, PhD, both at the Yerkes National Primate Research Center at Emory University, have shown that CART peptide, a chemical that occurs naturally in both the rodent and human brain, reduces some effects of cocaine when additional amounts are administered to the region of the brain that is associated with reward and addiction. These findings, which were presented on November 8 at the Society for Neuroscience meeting in New Orleans, appear in the December issue of the Journal of Pharmacology and Experimental Therapeutics and suggest CART peptide receptors in the brain could be targets for developing medications to treat cocaine abuse.



For their study, Dr. Jaworski, a post-doctoral fellow, and Dr. Kuhar, chief of the Neuroscience Division at Yerkes and a Georgia Research Alliance Eminent Scholar, infused CART peptide into the nucleus accumbens (NA) of rodents to determine how it affects the increase of body movement, or locomotor activity, that is widely seen as one effect of psychostimulant drugs. The researchers observed that the cocaine-induced movement was reduced after the rodents received CART peptide. "This is the first study to demonstrate CART peptides in the nucleus accumbens hinder the effects of cocaine," said Dr. Jaworski. "Our findings open a door to develop potential treatment options for cocaine addiction."

When infused into other areas of the "pleasure pathway," the part of the brain in both rodents and humans that is activated when cocaine is administered, CART peptide has been shown to produce minimal psychostimulant-like effects. "Past studies have shown CART peptide is slightly cocaine-like in other areas of the brain, but nevertheless inhibits further stimulation from the drug," said Dr. Kuhar. "While additional research will be necessary, we have demonstrated the importance of CART peptide in combating or slowing down some of the effects of cocaine."


The researchers’ immediate next steps are to study CART peptide’s mechanism of action on the brain, as well as to determine if rodents who have been treated with CART peptide will administer less cocaine to themselves than those that have not been treated. They hope to determine how CART peptide produces the "anti-cocaine" effect so they can one day begin to develop treatments for cocaine addiction in humans.


The Yerkes National Primate Research Center of Emory University is one of eight National Primate Research Centers funded by the National Institutes of Health. The Yerkes Research Center is a multidisciplinary research institute recognized as a leader in biomedical and behavioral studies with nonhuman primates. Yerkes scientists are on the forefront of developing vaccines for AIDS and malaria, and treatments for cocaine addiction and Parkinson’s disease. Other research programs include cognitive development and decline, childhood visual defects, organ transplantation, the behavioral effects of hormone replacement therapy and social behaviors of primates. Leading researchers located worldwide seek to collaborate with Yerkes scientists.

Lisa Newbern | EurekAlert!
Further information:
http://www.emory.edu/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>