Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major nanotechnology hurdle not so worrisome, thanks to Indiana University chemistry discovery

03.12.2003


According to the classic rules of physics, substances melt at a lower temperature when their sizes decrease. But scientists at Indiana University Bloomington have found that at least one substance, gallium, breaks the rules, remaining stable as a solid at temperatures as much as 400 degrees Fahrenheit above the element’s normal melting point. Their report will be published in an upcoming issue of Physical Review Letters.



The discovery gives hope to some nanotechnologists and "nanocomputer" engineers, who have been worried that components will behave unpredictably at smaller sizes, possibly even melting at room temperature.

"We expect this finding will interest nanotechnologists and the manufacturers of tomorrow’s computers," said chemist Martin Jarrold, who led the National Science Foundation-funded research. "But we also believe chemists will find this phenomenon exciting -- it totally confounds their expectations."


Jarrold and his collaborators showed that clusters of a few gallium atoms remain solid rather than becoming liquid near the element’s normal melting point, 86 F. Just as surprisingly, the researchers showed that the tiny gallium clusters are actually more stable as solids when composed of 17, 39 and 40 atoms than a gallium slab containing trillions of atoms.

Jarrold decided to test the stability of a substance that is especially sensitive to temperature changes near room temperature. Fitting that description is the metallic element gallium, which has an unusually low melting point. Placing a warm fingertip on a cube of gallium will cause it to melt.

The researchers constructed a special device to shoot tiny gallium particles containing just a few atoms into gaseous helium. Collisions with the helium atoms broke the gallium clusters into small pieces. Two mass spectrometers measured the size of the intact and broken gallium clusters. By measuring the energy needed to break the clusters into pieces, the researchers were able to determine whether the clusters were in liquid or solid states. Jarrold and his team observed that gallium clusters with 39 and 40 atoms melt at around 531 F. Gallium clusters containing 17 atoms didn’t melt at all across the minus 297 to 837 F temperature range the scientists surveyed. Why the gallium clusters retained such stability at high temperature is a mystery.

Not all elements or compounds are likely to behave as gallium does. Using the same method, Jarrold previously learned that particles of sodium chloride -- table salt -- obey the classical rules of physics. Small salt particles with just a few atoms melt at low temperatures.

Despite its potential implications for industry, Jarrold said his discovery and his general interest in atomic and molecular clusters, which began at Bell Laboratories, are mainly academic.

"I just think it’s fascinating to ask how small you can make something before its properties change," Jarrold said.

IUB chemists Gary Breaux and Robert Benirschke, Nagoya University (Japan) chemist Toshiki Sugai, and Intel Corporation scientist Brian Kinnear also contributed to the report. All of the report’s contributing authors were at IUB when the study was completed.

To speak with Jarrold, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

"Hot and Solid Gallium Clusters: Too Small to Melt," Physical Review Letters, volume and issue number unassigned

David Bricker | Indiana University
Further information:
http://newsinfo.iu.edu/news/page/normal/1188.html

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>