Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major nanotechnology hurdle not so worrisome, thanks to Indiana University chemistry discovery

03.12.2003


According to the classic rules of physics, substances melt at a lower temperature when their sizes decrease. But scientists at Indiana University Bloomington have found that at least one substance, gallium, breaks the rules, remaining stable as a solid at temperatures as much as 400 degrees Fahrenheit above the element’s normal melting point. Their report will be published in an upcoming issue of Physical Review Letters.



The discovery gives hope to some nanotechnologists and "nanocomputer" engineers, who have been worried that components will behave unpredictably at smaller sizes, possibly even melting at room temperature.

"We expect this finding will interest nanotechnologists and the manufacturers of tomorrow’s computers," said chemist Martin Jarrold, who led the National Science Foundation-funded research. "But we also believe chemists will find this phenomenon exciting -- it totally confounds their expectations."


Jarrold and his collaborators showed that clusters of a few gallium atoms remain solid rather than becoming liquid near the element’s normal melting point, 86 F. Just as surprisingly, the researchers showed that the tiny gallium clusters are actually more stable as solids when composed of 17, 39 and 40 atoms than a gallium slab containing trillions of atoms.

Jarrold decided to test the stability of a substance that is especially sensitive to temperature changes near room temperature. Fitting that description is the metallic element gallium, which has an unusually low melting point. Placing a warm fingertip on a cube of gallium will cause it to melt.

The researchers constructed a special device to shoot tiny gallium particles containing just a few atoms into gaseous helium. Collisions with the helium atoms broke the gallium clusters into small pieces. Two mass spectrometers measured the size of the intact and broken gallium clusters. By measuring the energy needed to break the clusters into pieces, the researchers were able to determine whether the clusters were in liquid or solid states. Jarrold and his team observed that gallium clusters with 39 and 40 atoms melt at around 531 F. Gallium clusters containing 17 atoms didn’t melt at all across the minus 297 to 837 F temperature range the scientists surveyed. Why the gallium clusters retained such stability at high temperature is a mystery.

Not all elements or compounds are likely to behave as gallium does. Using the same method, Jarrold previously learned that particles of sodium chloride -- table salt -- obey the classical rules of physics. Small salt particles with just a few atoms melt at low temperatures.

Despite its potential implications for industry, Jarrold said his discovery and his general interest in atomic and molecular clusters, which began at Bell Laboratories, are mainly academic.

"I just think it’s fascinating to ask how small you can make something before its properties change," Jarrold said.

IUB chemists Gary Breaux and Robert Benirschke, Nagoya University (Japan) chemist Toshiki Sugai, and Intel Corporation scientist Brian Kinnear also contributed to the report. All of the report’s contributing authors were at IUB when the study was completed.

To speak with Jarrold, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

"Hot and Solid Gallium Clusters: Too Small to Melt," Physical Review Letters, volume and issue number unassigned

David Bricker | Indiana University
Further information:
http://newsinfo.iu.edu/news/page/normal/1188.html

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>