Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes are ’nibbled’ before they fuse, researchers report

02.12.2003


Discovery may have implications for stabilizing chromosomes in cancer cells



Overturning 60 years of scientific presumption, new evidence from Johns Hopkins scientists shows that enzymes nibble away at chromosomes when the chromosomes’ protective tips, called telomeres, get too short.

Much like the plastic tips on shoelaces, telomeres protect the ends of chromosomes. When telomeres get too short, cells usually die. If they don’t, the unprotected ends drag the chromosomes through an ugly assortment of fusions that lead to rearrangements, deletions and insertions that scramble the cell’s genetic material and can lead to cancer. Until now, scientists had presumed that the fusions were the first thing to happen when telomeres stop protecting the chromosomes.


"We have always thought that if we can understand how shortened telomeres create genomic instability, we might be able to find targets in that process to push abnormal cells toward death and away from trying to repair themselves," says Carol Greider, Ph.D., professor and director of molecular biology and genetics at the Johns Hopkins School of Medicine. "Now it turns out that what we’ve always thought was the first step in the process is not the first step at all."

Writing in the December issue of Molecular and Cellular Biology, Greider and Hopkins graduate student Jennifer Hackett describe experiments with yeast which revealed that instead of just sticking, or fusing, end-to-end, chromosomes whose telomeres are too short are first nibbled by enzymes that normally clean up broken chromosomes.

"The fusion pathway was our favorite model of what goes wrong first when telomeres get too short. All the papers use that model to describe how loss of telomere function causes genomic instability," says Greider. "But just because we see a lot of something, doesn’t mean it’s the first thing that happens. We were quite surprised to find that fusion isn’t the first effect of short telomeres."

In the traditional fusion scenario, officially called the "breakage-fusion-bridge" pathway, a cell interprets chromosomes with short telomeres as being broken, and sets in motion machinery to "fix" the break by fusing it to another exposed end. The unintended consequence of this fix is the connection of two chromosomes. If the fused chromosomes are pulled to opposite sides of a dividing cell, they form a bridge that breaks randomly as the cell divides, and the process begins again.

To test whether this was the correct or only scenario, Hackett inserted genetic markers into a yeast chromosome to reveal where genetic damage most often occurs when telomeres got too short. Instead of random damage, she discovered that the marker at the very end of the chromosome was most likely to be lost, and the marker closest to the chromosome’s center the least likely.

"If fusion and breakage was the primary mechanism of gene loss, the pattern of loss would have been random -- each marker would have been just as likely as the others to be lost," explains Greider. "The marker loss we saw was not at all random, so we knew some other mechanism was at work."

Then, Hackett studied the engineered chromosomes in yeast missing an enzyme called exonuclease that normally recognizes and chews up broken chromosomes one strand of DNA at a time. Without the enzyme there were fewer chromosome rearrangements, offering strong evidence that this enzyme is doing the damage.

"Fusion happens, but it’s not the primary mechanism that triggers gene loss after telomeres get too short," says Greider. "Instead, exonuclease activity causes the bulk of immediate gene loss."

To prove that fusion does indeed result in a random pattern of marker loss, Hackett made an artificial fused, or di-centric, chromosome, complete with genetic markers to identify which segments were destroyed. Since Hackett engineered it, this fused chromosome could not already have been "nibbled" by an exonuclease.

"We demonstrated that fused chromosomes do break randomly, at which point exonucleases attack the exposed ends," says Greider. "Fusion is a big part of what leads to major genomic instability when telomeres aren’t working, but it’s not the initial problem. Our discovery should spark researchers in the field to think along new lines."

Greider cautions that they still need to verify that the same mechanism is to blame for genomic instability in mammalian cells as in yeast. If so, identifying other proteins that work with exonucleases may offer a target to block the process and push cells in cancer toward death instead of genomic instability.


Hackett is now a postdoctoral fellow at Harvard Medical School. Hackett was funded by the Johns Hopkins Predoctoral Training Program in Human Genetics and Molecular Biology and the National Science Foundation. The studies were funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://mcb.asm.org/
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>