Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chromosomes are ’nibbled’ before they fuse, researchers report

02.12.2003


Discovery may have implications for stabilizing chromosomes in cancer cells



Overturning 60 years of scientific presumption, new evidence from Johns Hopkins scientists shows that enzymes nibble away at chromosomes when the chromosomes’ protective tips, called telomeres, get too short.

Much like the plastic tips on shoelaces, telomeres protect the ends of chromosomes. When telomeres get too short, cells usually die. If they don’t, the unprotected ends drag the chromosomes through an ugly assortment of fusions that lead to rearrangements, deletions and insertions that scramble the cell’s genetic material and can lead to cancer. Until now, scientists had presumed that the fusions were the first thing to happen when telomeres stop protecting the chromosomes.


"We have always thought that if we can understand how shortened telomeres create genomic instability, we might be able to find targets in that process to push abnormal cells toward death and away from trying to repair themselves," says Carol Greider, Ph.D., professor and director of molecular biology and genetics at the Johns Hopkins School of Medicine. "Now it turns out that what we’ve always thought was the first step in the process is not the first step at all."

Writing in the December issue of Molecular and Cellular Biology, Greider and Hopkins graduate student Jennifer Hackett describe experiments with yeast which revealed that instead of just sticking, or fusing, end-to-end, chromosomes whose telomeres are too short are first nibbled by enzymes that normally clean up broken chromosomes.

"The fusion pathway was our favorite model of what goes wrong first when telomeres get too short. All the papers use that model to describe how loss of telomere function causes genomic instability," says Greider. "But just because we see a lot of something, doesn’t mean it’s the first thing that happens. We were quite surprised to find that fusion isn’t the first effect of short telomeres."

In the traditional fusion scenario, officially called the "breakage-fusion-bridge" pathway, a cell interprets chromosomes with short telomeres as being broken, and sets in motion machinery to "fix" the break by fusing it to another exposed end. The unintended consequence of this fix is the connection of two chromosomes. If the fused chromosomes are pulled to opposite sides of a dividing cell, they form a bridge that breaks randomly as the cell divides, and the process begins again.

To test whether this was the correct or only scenario, Hackett inserted genetic markers into a yeast chromosome to reveal where genetic damage most often occurs when telomeres got too short. Instead of random damage, she discovered that the marker at the very end of the chromosome was most likely to be lost, and the marker closest to the chromosome’s center the least likely.

"If fusion and breakage was the primary mechanism of gene loss, the pattern of loss would have been random -- each marker would have been just as likely as the others to be lost," explains Greider. "The marker loss we saw was not at all random, so we knew some other mechanism was at work."

Then, Hackett studied the engineered chromosomes in yeast missing an enzyme called exonuclease that normally recognizes and chews up broken chromosomes one strand of DNA at a time. Without the enzyme there were fewer chromosome rearrangements, offering strong evidence that this enzyme is doing the damage.

"Fusion happens, but it’s not the primary mechanism that triggers gene loss after telomeres get too short," says Greider. "Instead, exonuclease activity causes the bulk of immediate gene loss."

To prove that fusion does indeed result in a random pattern of marker loss, Hackett made an artificial fused, or di-centric, chromosome, complete with genetic markers to identify which segments were destroyed. Since Hackett engineered it, this fused chromosome could not already have been "nibbled" by an exonuclease.

"We demonstrated that fused chromosomes do break randomly, at which point exonucleases attack the exposed ends," says Greider. "Fusion is a big part of what leads to major genomic instability when telomeres aren’t working, but it’s not the initial problem. Our discovery should spark researchers in the field to think along new lines."

Greider cautions that they still need to verify that the same mechanism is to blame for genomic instability in mammalian cells as in yeast. If so, identifying other proteins that work with exonucleases may offer a target to block the process and push cells in cancer toward death instead of genomic instability.


Hackett is now a postdoctoral fellow at Harvard Medical School. Hackett was funded by the Johns Hopkins Predoctoral Training Program in Human Genetics and Molecular Biology and the National Science Foundation. The studies were funded by the National Institute of General Medical Sciences, part of the National Institutes of Health.

Joanna Downer | EurekAlert!
Further information:
http://mcb.asm.org/
http://www.hopkinsmedicine.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>