Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover novel role for estrogen in bone marrow

01.12.2003


Scientists have discovered a new role for estrogen in maintaining health. Drs. Yuka Nagata and Kazuo Todokoro report in the December 1 issue of Genes & Development that the most abundant form of naturally occurring estrogen, estradiol, triggers the formation of blood platelet cells. This discovery has important clinical implications for the treatment of conditions associated with altered platelet counts, like anemia, certain leukemias, and even chemotherapy.



Blood is composed of 3 cell types: red blood cells, white blood cells, and platelets. Platelets circulate in the bloodstream to facilitate clotting and halt bleeding. Platelets are derived from a specialized bone marrow cell called a megakaryocyte. A mature megakaryocyte extends long cytoplasmic processes (termed proplatelets) from its cell surface that, in one of the most dramatic morphological changes known to cell biologists, simultaneously fragments into thousands of new platelet cells.

Dr. Nagata and colleagues set out to identify the cellular signal of this remarkable event. Previous work identified a gene regulator (what scientists refer to as a transcription factor) named p45 NF-E2 as being expressed in megakaryocyte cells and required for proplatelet formation. However, the target(s) of p45 NF-E2 were, until now, unknown.


Dr. Nagata found that the 3b-HSD gene is normally turned-on by p45 NF-E2 during megakaryocyte development. 3b-HSD encodes an enzyme that regulates all steroid hormone biosynthesis. Thus, Dr. Todokoro and colleagues explored which steroid hormones are produced in megakaryocyte cells. Much to their surprise, they found estrogen.

Dr. Nagata and colleagues determined that 3b-HSD induces the production of estrogen, in the form of estradiol, in both male and female megakaryocyte cells. Further work demonstrated a crucial role for estradiol in proplatelet formation, as evidenced by their finding that the addition of exogenous estradiol increased proplatelt formation by more than %50, while the inhibition of estradiol receptors blocked proplatelet formation in live mice.

Taken together, this work by Dr. Nagata and colleagues delineates a genetic mechanism for regulating the formation of blood platelets: The p45 NF-E2 transcription factor turns on 3b-HSD gene expression, leading to the synthesis of estradiol and the subsequent activation of proplatelet formation. Such insight will enable researchers and clinicians to devise therapeutic strategies to manipulate this process, either to increase or decrease proplatelet formation.

The authors suggest that patients suffering from low platelet counts, such as those with anemia, bone marrow abnormalities, or undergoing chemotherapy, may benefit from the administration of estradiol and/or a 3b-HSD activator, as an alternative to blood transfusions to increase platelet levels. Conversely, patients with abnormally high platelet counts, who are prone to forming clots and therefore at an increased risk for strokes, heart attacks, or even miscarriage (ie. from placental clots) would be candidates for drugs designed to specifically block 3b-HSD or estradiol receptors to effectively normalize their platelet levels.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>