Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover novel role for estrogen in bone marrow

01.12.2003


Scientists have discovered a new role for estrogen in maintaining health. Drs. Yuka Nagata and Kazuo Todokoro report in the December 1 issue of Genes & Development that the most abundant form of naturally occurring estrogen, estradiol, triggers the formation of blood platelet cells. This discovery has important clinical implications for the treatment of conditions associated with altered platelet counts, like anemia, certain leukemias, and even chemotherapy.



Blood is composed of 3 cell types: red blood cells, white blood cells, and platelets. Platelets circulate in the bloodstream to facilitate clotting and halt bleeding. Platelets are derived from a specialized bone marrow cell called a megakaryocyte. A mature megakaryocyte extends long cytoplasmic processes (termed proplatelets) from its cell surface that, in one of the most dramatic morphological changes known to cell biologists, simultaneously fragments into thousands of new platelet cells.

Dr. Nagata and colleagues set out to identify the cellular signal of this remarkable event. Previous work identified a gene regulator (what scientists refer to as a transcription factor) named p45 NF-E2 as being expressed in megakaryocyte cells and required for proplatelet formation. However, the target(s) of p45 NF-E2 were, until now, unknown.


Dr. Nagata found that the 3b-HSD gene is normally turned-on by p45 NF-E2 during megakaryocyte development. 3b-HSD encodes an enzyme that regulates all steroid hormone biosynthesis. Thus, Dr. Todokoro and colleagues explored which steroid hormones are produced in megakaryocyte cells. Much to their surprise, they found estrogen.

Dr. Nagata and colleagues determined that 3b-HSD induces the production of estrogen, in the form of estradiol, in both male and female megakaryocyte cells. Further work demonstrated a crucial role for estradiol in proplatelet formation, as evidenced by their finding that the addition of exogenous estradiol increased proplatelt formation by more than %50, while the inhibition of estradiol receptors blocked proplatelet formation in live mice.

Taken together, this work by Dr. Nagata and colleagues delineates a genetic mechanism for regulating the formation of blood platelets: The p45 NF-E2 transcription factor turns on 3b-HSD gene expression, leading to the synthesis of estradiol and the subsequent activation of proplatelet formation. Such insight will enable researchers and clinicians to devise therapeutic strategies to manipulate this process, either to increase or decrease proplatelet formation.

The authors suggest that patients suffering from low platelet counts, such as those with anemia, bone marrow abnormalities, or undergoing chemotherapy, may benefit from the administration of estradiol and/or a 3b-HSD activator, as an alternative to blood transfusions to increase platelet levels. Conversely, patients with abnormally high platelet counts, who are prone to forming clots and therefore at an increased risk for strokes, heart attacks, or even miscarriage (ie. from placental clots) would be candidates for drugs designed to specifically block 3b-HSD or estradiol receptors to effectively normalize their platelet levels.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>