Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers create tissue-engineered joint from stem cells

01.12.2003


Researchers at the University of Illinois at Chicago have successfully turned adult stem cells into bone and cartilage, forming the ball structure of a joint found in the human jaw with its characteristic shape and tissue composition.



Tested so far only in animals, the tissue-engineering procedure to create a human-shaped articular condyle could be used one day to regenerate the ball structure of joints in the jaw, knee and hip that have been lost to injury or diseases such as arthritis.

"This represents the first time a human-shaped articular condyle with both cartilage- and bone-like tissues was grown from a single population of adult stem cells," said Jeremy Mao, director of the tissue engineering laboratory at UIC and associate professor of bioengineering and orthodontics.


"Our ultimate goal is to create a condyle that is biologically viable -- a living tissue construct that integrates with existing bone and functions like the natural joint."

To create the articular condyle, Mao and Adel Alhadlaq, a doctoral student in anatomy and cell biology, used adult mesenchymal stem cells taken from the bone marrow of rats. Bone marrow is the inner, spongy tissue of long bones like the femur and tibia, the leg bones.

Under certain conditions, mesenchymal stem cells, present in a number of adult tissues, can potentially differentiate into virtually any kind of connective tissue -- including tendons, skeletal muscle, teeth, ligaments, cartilage and bone.

Using chemical substances and growth factors, the scientists induced the adult stem cells to develop into cells capable of producing cartilage and bone.

The cells were then stratified into two integrated layers, encapsulated in a biocompatible gel-like material, and shaped into an articular condyle using a mold made from the temporomandibular or jaw joint of a human cadaver.

After several weeks, Mao and his colleagues found that the tissue-engineered structures retained the molded shape of the human mandibular condyle, with bone-like tissue underneath and a layer of cartilage-like tissue on top -- an arrangement similar to that of a natural articular condyle.

Moreover, multiple tests confirmed that the newly grown tissues were indeed bone and cartilage, having the characteristic microscopic components: for bone, a matrix of collagen with deposits of calcium salts, and for cartilage, collagen and large amounts of substances called proteoglycans.

Mao stressed that much additional work is needed before tissue-engineered condyles are ready for therapeutic use in patients suffering from osteoarthritis, rheumatoid arthritis, injuries or congenital anomalies.

Nevertheless, he believes that with further refinements, the procedure could one day be adopted for total hip and knee replacements.

"Our findings represent a proof of concept for further development of tissue-engineered condyles," Mao said.

The first in a series of reports on the tissue-engineered articular condyle will be published as a rapid communication in the December issue of the Journal of Dental Research.

###
Mao’s tissue engineering laboratory is funded by multiple grants from the National Institutes of Health and the Whitaker Foundation.

For more information about UIC, visit www.uic.edu.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>