Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC researchers create tissue-engineered joint from stem cells

01.12.2003


Researchers at the University of Illinois at Chicago have successfully turned adult stem cells into bone and cartilage, forming the ball structure of a joint found in the human jaw with its characteristic shape and tissue composition.



Tested so far only in animals, the tissue-engineering procedure to create a human-shaped articular condyle could be used one day to regenerate the ball structure of joints in the jaw, knee and hip that have been lost to injury or diseases such as arthritis.

"This represents the first time a human-shaped articular condyle with both cartilage- and bone-like tissues was grown from a single population of adult stem cells," said Jeremy Mao, director of the tissue engineering laboratory at UIC and associate professor of bioengineering and orthodontics.


"Our ultimate goal is to create a condyle that is biologically viable -- a living tissue construct that integrates with existing bone and functions like the natural joint."

To create the articular condyle, Mao and Adel Alhadlaq, a doctoral student in anatomy and cell biology, used adult mesenchymal stem cells taken from the bone marrow of rats. Bone marrow is the inner, spongy tissue of long bones like the femur and tibia, the leg bones.

Under certain conditions, mesenchymal stem cells, present in a number of adult tissues, can potentially differentiate into virtually any kind of connective tissue -- including tendons, skeletal muscle, teeth, ligaments, cartilage and bone.

Using chemical substances and growth factors, the scientists induced the adult stem cells to develop into cells capable of producing cartilage and bone.

The cells were then stratified into two integrated layers, encapsulated in a biocompatible gel-like material, and shaped into an articular condyle using a mold made from the temporomandibular or jaw joint of a human cadaver.

After several weeks, Mao and his colleagues found that the tissue-engineered structures retained the molded shape of the human mandibular condyle, with bone-like tissue underneath and a layer of cartilage-like tissue on top -- an arrangement similar to that of a natural articular condyle.

Moreover, multiple tests confirmed that the newly grown tissues were indeed bone and cartilage, having the characteristic microscopic components: for bone, a matrix of collagen with deposits of calcium salts, and for cartilage, collagen and large amounts of substances called proteoglycans.

Mao stressed that much additional work is needed before tissue-engineered condyles are ready for therapeutic use in patients suffering from osteoarthritis, rheumatoid arthritis, injuries or congenital anomalies.

Nevertheless, he believes that with further refinements, the procedure could one day be adopted for total hip and knee replacements.

"Our findings represent a proof of concept for further development of tissue-engineered condyles," Mao said.

The first in a series of reports on the tissue-engineered articular condyle will be published as a rapid communication in the December issue of the Journal of Dental Research.

###
Mao’s tissue engineering laboratory is funded by multiple grants from the National Institutes of Health and the Whitaker Foundation.

For more information about UIC, visit www.uic.edu.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>