Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein-hungry cells ’go fishing,’ report Purdue biologists

26.11.2003


Shown in this graphic is the protein colicin and the receptors it uses to cross the cellular membrane of an E. coli bacterium. After lodging one of its ends in the "BtuB" receptor, usually used to admit vitamin B12 into the cell, the protein uses its extended "fishing pole" to search for a porous second receptor, "OmpF," that will allow its import across the membrane. (Kurisu et al., Nature Structural Biology, 2003).

When a cell needs a protein to function, it sometimes uses molecule-sized fishing poles to "catch" one and "cast" it across the cell membrane, reports a research team of Purdue University biologists.

Using high-resolution X-ray crystallography, a team including William A. Cramer has determined the structure and surprising behavior of a protein receptor complex, or "gate," found in the outer membrane of an E. coli bacterium. The complex is one of thousands of such tiny gates that the cell uses to bring substances into its cytoplasm, or interior. The team also determined the structure of one such substance, a protein called colicin, that the gate admits into the E. coli, marking a first for the biological field.

"This represents the first time we have seen a receptor complex and its corresponding importable protein up close," said Cramer, who is Henry Koffler Distinguished Professor of Biological Sciences in Purdue’s School of Science. "While we have seen the gates before as a group, we have never seen how an individual gate works to bring a protein inside. This information could tell us a lot about our own metabolism."

The research, which appears in the November issue of Nature Structural Biology, was performed by a team including lead authors Genji Kurisu, Stanislav Zakharov and Masha Zhalnina. Also contributing was Michael Wiener of the University of Virginia’s Department of Molecular Physiology and Biological Physics.

The group’s work turned up some unusual details about cellular commerce, the business an E. coli cell conducts with the outside world through its membrane. With hundreds of protein receptors serving as gate guards, the membrane admits into the cytoplasm the nutrients the cell needs to exist. In most cases, receptors are made to admit only one particular substance.

"If you’ve ever seen the game ’Perfection,’ in which you have to put a number of uniquely shaped pegs into their corresponding holes before time runs out, you have a general idea of how these receptors are laid out in the cell membrane," Cramer said. "There are hundreds of receptor types, each of which is built to admit one thing – iron or sugar molecules, for example."

But while the receptor Cramer’s team analyzed was made to admit the vitamin B-12, the researchers found that colicin could enter the E. coli by "parasitizing" the receptor for its own use.

"Its method, at first, seems a bit unorthodox," Cramer said. "Colicin essentially has two parts connected to one another by a long rod, and it cannot fit through a single hole in the membrane. So once it finds its first hole, it has to go fishing for another."

One of the colicin’s halves binds to the vitamin B-12 receptor, while its tail end remains hanging from the membrane like a long fishing rod. The B-12 receptor then essentially swings the tail around until it finds what it needs – the second receptor that can admit the rest of the colicin.

"This two-receptor approach may appear to be a strange way to do business," Cramer said, "but we theorize that it is actually the norm, rather than the exception, when it comes to getting proteins across membranes."

While this is the only example thus far of how a protein uses receptors, Cramer said that evidence for the theory lies in the organization of the receptors in the membranes themselves.

"Receptors tend to lie together in clusters," he said. "Biologists have long found a concentration of one type of receptor mixed in with a few other types, much as elephants and giraffes congregate on the plains, while other species are found in the forest. But here, it’s not terrestrial ecology at work – we think the receptors lie close together because proteins need more than one to get inside."

Another unusual aspect of the research was the nature of the protein itself. Ordinarily, a cell will admit only beneficial substances, but colicin is actually toxic to the E. coli once it penetrates the membrane.

"Colicin fools the membrane, and can actually kill the bacterium once it’s inside," Cramer said. "We, of course, also would like to find out how the cell ingests a helpful protein rather than a poisonous one, but this is the only protein we know that can fool the receptor complex we managed to isolate for this study."

Membrane proteins have proven to be notoriously difficult to study (see related articles), but Cramer’s team has had a string of successful research on these molecules, which perform many functions related to metabolism in living things.

"If we can find out more about how these membrane proteins work, we may gain fundamental insights into how your body obtains energy from the environment," Cramer said. "Strength, endurance, health – they’re all essentially metabolic processes, and figuring out how these processes change as we age will almost certainly depend on figuring out how membrane proteins do their jobs."

Members of Cramer’s research team are affiliated with several research centers at Purdue, including the Markey Center for Structural Biology, the Bindley Bioscience Center at Discovery Park, the Interdepartmental Program in Biochemistry and Molecular Biology, and the Purdue Cancer Center.

Funding for this research was provided mainly by the National Institutes of Health.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu

Source: William Cramer, (765) 494-4956, wac@bilbo.bio.purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/031125.Cramer.ecoli.html

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>