Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cytokine Signal Shuts Down Hyperactive T Cells; "Off Switch" Could Halt Inflammation And Autoimmunity

26.11.2003


Liver cells undergoing an autoimmune attack
Credit: Alejandro Villarino, University of Pennsylvania.


Since their discovery, cytokines have provided biomedical researchers with a tangled web of immune-system pathways to unknot. While most known cytokines have a role in stimulating immunity, one cytokine, IL-27, may actually suppress CD4 T cells, the helper T cells that orchestrate the immune system response to infections, according to researchers at the University of Pennsylvania School of Veterinary Medicine.

Their findings could provide researchers with a way to clamp down on dozens of autoimmune conditions caused by an overzealous immune system, such as Crohn disease, lupus or even sepsis. Their research is the cover article for the November issue of the journal Immunity.

"When the immune system is activated there is a cascade of cytokine interactions that regulate the growth and functions of an array of immune cells," said Christopher Hunter, an associate professor in Penn Department of Pathobiology and senior author of the paper. "Contrary to previous studies, the IL-27 cytokine actually limits the duration and intensity of T cell activation, an ’off switch’ as it were."



To gauge the function of IL-27, Hunter and his colleagues used mice that lack the cytokine receptor, a protein called WSX-1. Without WSX-1, IL-27 lacked a target a button to press and the researchers were able to determine how the immune system worked without this particular cytokine.

When the animal models were challenged with a toxoplasma infection, their immune systems were able to fight off the parasite but their immune response continued well after the parasites were controlled. Instead, the researchers found a surplus of activated T cells and increasing amounts of interferon gamma, a cytokine that activates antigen-presenting cells and other parts of the immune system.

These results differed from previous studies that showed IL-27 to be among the many cytokines involved in T cell differentiation and growth. Despite its similarity to other T cell-promoting cytokines, IL-27 and its receptor may be an important part of the regulation of the immune system.

According to the researchers, the identification of the role of IL-27 and its receptor has obvious clinical implications for autoimmune disorders involving T cell mediated inflammatory responses. Autoimmune diseases, while varying in severity, result as immune cells primed and activated begin destroying native cells as well as those of pathogens.

"There are many immune-mediated diseases with many different causes, but this particular pathway may represent a universal checkpoint for the immune system," Hunter said. "It may be possible to create drugs that turn the immune system off without actually suppressing the beneficial immune reactions."

Funding for this research was supported by grants from the National Institutes of Health.

Other Penn scientists involved in this study were Alejandro Villarino, Linda Lieberman and Emma Wilson. Linda Hibbert and Robert Kastelein of DNAX Research Institute, Tak Mak of the University of Toronto, Hiroki Yoshida of Kyushu University and Christiaan Saris of Amgen Inc. also contributed to the Immunity paper.

Greg Lester | University of Pennsylvania
Further information:
http://www.upenn.edu/pennnews/article.php?id=563

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>