Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal early steps in clone development

26.11.2003


Despite widely publicized reports about the sheep, Dolly and Polly, cloning is still not considered successful in the scientific community. Only two percent of clones succeed and they are sometimes unhealthy. To understand exactly where cloning goes wrong, researchers at Temple University School of Medicine (TUSM) examined and compared the earliest stages of development in normal embryos and cloned embryos.



"First, we mapped out some of the early steps an egg and sperm take to become an embryo," said Keith Latham, PhD, associate professor of biochemistry at TUSM and lead author of the study. "Next, we examined how well clones were able to replicate these early steps. We discovered that at this stage of development, 100 percent of clones replicated the process entirely. This tells us that the problems must occur later in the development process."

The study, "Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice," will appear in an upcoming issue of Developmental Biology. The study is part of a larger program, directed by Latham and funded by two National Institutes of Health (NIH) grants, that is examining how eggs communicate with chromosomes.


"When a sperm and egg unite, each brings a set of chromosomes to the table. Molecules in the egg turn the two sets of chromosomes, known as genomes, into an embryo. During cloning, we ask the egg to do the same thing but with different starting materials," said Latham. "Instead of a sperm, the egg has to work with an adult cell from the organism that is being cloned. We used to think that during cloning, the egg integrated the adult cell as easily as it does the sperm.

"However, once the first few steps of development occur, the rest of the process is actually quite slow and incomplete. Cloned embryos bear characteristics of both an embryo and an adult cell. They’re not very happy and healthy."

Latham suspects part of the problem is the culture used to house the cells in the laboratory. "We have cultures that work very well for embryos and cultures that work very well for adult cells. However, we still need to find the optimal culture media for cloned embryos. Once we find out what that is, cloning will probably be more successful," said Latham.

"Understanding the early development process could help us increase success rates for cloning and its potential applications, such as producing valuable farm animals and preserving endangered species," said Latham.

"As remarkable as it is to see clones born, cloning is really just a simple but striking demonstration of the truly remarkable processes that are at the root of each new life. We take this for granted, because it happens so readily, and yet when one gains an appreciation for the many complex things that must occur in order for each of us to be in the world, it really sinks in just how terrific the process is," exclaimed Latham.

Temple researchers collaborated with researchers at the University of Utah Health Sciences Center and Peregrine pharmaceuticals on the project.

Eryn Jelesiewicz | EurekAlert!
Further information:
http://www.temple.edu/

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>