Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers show absence of key oxygen-sensing molecule leads to developmental defects

25.11.2003


UT Southwestern Medical Center at Dallas researchers have shown that the absence of a key oxygen-sensing molecule can lead to multiple developmental defects - from an enlarged heart to eye problems.



The researchers generated the first mouse model that lacks entirely a member of an important family of proteins involved in sensing hypoxia, a state of reduced oxygen in the body’s cells that is associated with conditions such as heart attacks, stroke and lung disease.

This new model allowed the scientists to take a closer look into the exact physiologic function of these proteins, which was unknown until now, and the model provided clues as to what human diseases may be caused by alterations in these proteins. The researchers reported in the online version of Nature Genetics that the absence of this crucial oxygen-sensing molecule leads to developmental defects due to the inability of the mice to respond to high, damaging levels of oxygen-based molecules called reactive oxygen species.


Their knockout mice lacked the gene Epas1, which encodes HIF-2a (hypoxia inducible factor 2a ), a molecule activated in response to hypoxia. In the mice that lacked HIF-2a, the researchers reported abnormalities including cardiac hypertrophy or enlarged heart, fatty liver, eye defects, serum biochemical abnormalities, and increased oxidative stress - conditions seen in human patients with mitochondrial defects.

"The surprise was that mice lacking the nuclear DNA-encoded Epas1/HIF-2a had changes in multiple organs that was suggestive of a mitochondrial disease state," said Dr. Joseph Garcia, assistant professor of internal medicine and senior author of the study. "Both mitochondrial and nuclear DNA mutations can adversely affect these crucial intracellular organelles and lead to widespread abnormalities in humans as well as animal models."

The body has a normal response to hypoxia, which includes turning on specific genes that have protective roles to alleviate the detrimental effects of reduced oxygen in the cells. It likewise has an adaptive response to oxidative stress that involves increasing the expression of genes whose function is to eliminate oxygen radicals and their potentially harmful derivatives.

"This study provides evidence that Epas1/HIF-2a is an important regulator of gene expression for a particular group of genes involved in oxidative stress response," Dr. Garcia said. "In the absence of Epas1/HIF-2a, mice are not able to turn on the expression of these antioxidant genes, and the overall balance of the cell favors a state of oxidant excess, which led us to hypothesize that the mitochondria in the Epas1/HIF-2a knockout mice were impaired.

"We attributed the cause of impairment to increased oxidative stress and decreased elimination of reactive oxygen species."

To test their hypothesis, the researchers treated the mice with a chemical compound that mimics the activity of proteins encoded by genes that Epas1/HIF2a would normally activate. This chemical compound, which has antioxidant properties, substantially prevented or reversed the organ and metabolic abnormalities in the mice. In addition, treatment of pregnant females with the same molecule led to increased viability in their newborns, suggesting that "therapy that reduces oxidative stress, increases (newborn) survival to birth," the researchers reported.

"This research also has implications for a role of Epas1/HIF-2a and possibly other HIF factors in human mitochondrial disorders," Dr. Garcia said. "Their role in other human conditions associated with increased oxidative stress such as aging, cardiovascular disease and diabetes will require future studies."

Other researchers who contributed to the study included Dr. Michael Bennett, professor of pathology and pediatrics; Dr. Kan Ding, postdoctoral researcher in internal medicine; Yavuz Oktay, student research assistant in the Integrative Biology Graduate Program; Dr. James Richardson, professor of pathology; Dr. Marzia Scortegagna, postdoctoral researcher in internal medicine; John Shelton, a research scientist in internal medicine; Arti Gaur, a former research assistant in internal medicine; and researchers at the University of Washington School of Medicine.

The study was funded by the National Institutes of Health, the American Heart Association and the Donald W. Reynolds Foundation.

Amy Shields | UT Southwestern
Further information:
http://www8.utsouthwestern.edu/utsw/cda/dept37389/files/129258.html

More articles from Life Sciences:

nachricht In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings
20.02.2018 | University of Cambridge

nachricht Computers aid discovery of new, inexpensive material to make LEDs with high color quality
20.02.2018 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Rare find from the deep sea

20.02.2018 | Life Sciences

In living color: Brightly-colored bacteria could be used to 'grow' paints and coatings

20.02.2018 | Life Sciences

Observing and controlling ultrafast processes with attosecond resolution

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>