Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers show absence of key oxygen-sensing molecule leads to developmental defects

25.11.2003


UT Southwestern Medical Center at Dallas researchers have shown that the absence of a key oxygen-sensing molecule can lead to multiple developmental defects - from an enlarged heart to eye problems.



The researchers generated the first mouse model that lacks entirely a member of an important family of proteins involved in sensing hypoxia, a state of reduced oxygen in the body’s cells that is associated with conditions such as heart attacks, stroke and lung disease.

This new model allowed the scientists to take a closer look into the exact physiologic function of these proteins, which was unknown until now, and the model provided clues as to what human diseases may be caused by alterations in these proteins. The researchers reported in the online version of Nature Genetics that the absence of this crucial oxygen-sensing molecule leads to developmental defects due to the inability of the mice to respond to high, damaging levels of oxygen-based molecules called reactive oxygen species.


Their knockout mice lacked the gene Epas1, which encodes HIF-2a (hypoxia inducible factor 2a ), a molecule activated in response to hypoxia. In the mice that lacked HIF-2a, the researchers reported abnormalities including cardiac hypertrophy or enlarged heart, fatty liver, eye defects, serum biochemical abnormalities, and increased oxidative stress - conditions seen in human patients with mitochondrial defects.

"The surprise was that mice lacking the nuclear DNA-encoded Epas1/HIF-2a had changes in multiple organs that was suggestive of a mitochondrial disease state," said Dr. Joseph Garcia, assistant professor of internal medicine and senior author of the study. "Both mitochondrial and nuclear DNA mutations can adversely affect these crucial intracellular organelles and lead to widespread abnormalities in humans as well as animal models."

The body has a normal response to hypoxia, which includes turning on specific genes that have protective roles to alleviate the detrimental effects of reduced oxygen in the cells. It likewise has an adaptive response to oxidative stress that involves increasing the expression of genes whose function is to eliminate oxygen radicals and their potentially harmful derivatives.

"This study provides evidence that Epas1/HIF-2a is an important regulator of gene expression for a particular group of genes involved in oxidative stress response," Dr. Garcia said. "In the absence of Epas1/HIF-2a, mice are not able to turn on the expression of these antioxidant genes, and the overall balance of the cell favors a state of oxidant excess, which led us to hypothesize that the mitochondria in the Epas1/HIF-2a knockout mice were impaired.

"We attributed the cause of impairment to increased oxidative stress and decreased elimination of reactive oxygen species."

To test their hypothesis, the researchers treated the mice with a chemical compound that mimics the activity of proteins encoded by genes that Epas1/HIF2a would normally activate. This chemical compound, which has antioxidant properties, substantially prevented or reversed the organ and metabolic abnormalities in the mice. In addition, treatment of pregnant females with the same molecule led to increased viability in their newborns, suggesting that "therapy that reduces oxidative stress, increases (newborn) survival to birth," the researchers reported.

"This research also has implications for a role of Epas1/HIF-2a and possibly other HIF factors in human mitochondrial disorders," Dr. Garcia said. "Their role in other human conditions associated with increased oxidative stress such as aging, cardiovascular disease and diabetes will require future studies."

Other researchers who contributed to the study included Dr. Michael Bennett, professor of pathology and pediatrics; Dr. Kan Ding, postdoctoral researcher in internal medicine; Yavuz Oktay, student research assistant in the Integrative Biology Graduate Program; Dr. James Richardson, professor of pathology; Dr. Marzia Scortegagna, postdoctoral researcher in internal medicine; John Shelton, a research scientist in internal medicine; Arti Gaur, a former research assistant in internal medicine; and researchers at the University of Washington School of Medicine.

The study was funded by the National Institutes of Health, the American Heart Association and the Donald W. Reynolds Foundation.

Amy Shields | UT Southwestern
Further information:
http://www8.utsouthwestern.edu/utsw/cda/dept37389/files/129258.html

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>