Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new hypothesis on the origin of ’junk’ DNA

21.11.2003


The explosion of "junk" DNA in animals, plants and fungi may be the simple result of their ancestors’ reduced population sizes, according to a new hypothesis proposed by Indiana University Bloomington and University of Oregon scientists in the Nov. 21 issue of Science.



The hypothesis explains a mysterious genetic difference between bacteria and eukaryotes, a giant group of organisms that includes animals, plants, fungi, algae and other protists. Bacteria tend to have extremely lean genomes; their genes barely fit into them, without much genetic material left over. Eukaryotic genomes are a complex mixture of useful genes and useless ("junk") DNA jammed haphazardly between genes and even within them.

"The evolution of genomic complexity is inevitable," said IUB biologist Michael Lynch, who led the study. "It’s just that in bacteria, there is a pressure against it -- natural selection -- which works more efficiently when population sizes are big. Eukaryotes have much smaller population sizes compared to bacteria, and we believe this is the main reason junk DNA sequences are still with us."


Junk DNA dominates eukaryotic chromosomes. The chromosomal space taken up by just 30 human genes and the DNA within and between those genes could easily accommodate whole bacterial genomes containing 3,000 or 4,000 genes, Lynch said. While some of what geneticists have called junk DNA is turning out to be not so junky after all, Lynch said a substantial fraction of such genetic material probably deserves the name.

Genetic mutations occur in all organisms. But since large-scale mutations -- such as the random insertion of large DNA sequences within or between genes -- are almost always bad for an organism, Lynch and University of Oregon computer scientist John Conery suggest the only way junk DNA can survive the streamlining force of natural selection is if natural selection’s potency is weakened.

When populations get small, Lynch explained, natural selection becomes less efficient, which makes it possible for extraneous genetic sequences to creep into populations by mutation and stay there. In larger populations, disadvantageous mutations vanish quickly.

Most experts believe that the first eukaryotes, which were probably single-celled, appeared on Earth about 2.5 billion years ago. Multicellular eukaryotes are generally believed to have evolved about 700 million years ago. If Lynch’s and Conery’s explanation of why bacterial and eukaryotic genomes are so different is true, it provides new insights into the genomic characteristics of Earth’s first single-celled and multicellular eukaryotes.

A general rule in nature is that the bigger the species, the less populous it is. With a few exceptions, eukaryotic cells are so big that they make most bacteria look like barnacles on the side of a dinghy. If the first eukaryotes were larger than their bacterial ancestors, as Lynch believes, then their population sizes probably went down. This decrease in eukaryote population sizes is why a burgeoning of large-scale mutations survived natural selection in the first single-celled and multicellular eukaryotes, according to Lynch and Conery.

To estimate long-term population sizes of 50 or so species for which extensive genomic data was available, Lynch and Conery examined "silent-site" mutations. Silent-site mutations are single nucleotide changes within genes that don’t affect the gene product, which is a protein. Because of their unique characteristics, silent-site mutations can’t be significantly influenced by natural selection. The researchers were able to calculate rough estimates of the species’ long-term population sizes by assessing variation in the species’ silent-site nucleotides.

Of the original group of sampled organisms, Lynch and Conery selected a subset of about 30 and calculated, for each organism, the number of genes per total genome size as well as the longevity of gene duplications per total genome size. They also calculated the approximate amount of each organism’s genome taken up by DNA sequences that do not contain genes.

The researchers found that a consistent pattern emerged when genomic characteristics of bacteria and various eukaryotes were plotted against the species’ total genome sizes. Bigger species, such as salmon, humans and mice, tended to have small, long-term population sizes, more genes, more junk DNA and longer-lived gene duplications. Almost without exception, the species found to have large, long-term population sizes, fewer genes, less junk DNA and shorter-lived gene duplications were bacteria.

The data suggest it is genetic drift (an evolutionary force whose main component is randomness), not natural selection, that preserves junk DNA and other extraneous genetic sequences in organisms. When population sizes are large, drift is usually overpowered by natural selection, but when population sizes are small, drift may actually supersede natural selection as the dominant evolutionary force, making it possible for weakly disadvantageous DNA sequences to accumulate.

"As more organisms’ genomes are sequenced, we will continue to look at whether our model is upheld," Lynch said.


Lynch’s and Conery’s ongoing research on the origins of genomic complexity receives funding from the National Science Foundation and the National Institutes of Health.

To speak with Lynch, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

"The Origins of Genome Complexity," Science, Vol. 302, no. 5649

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>