Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new hypothesis on the origin of ’junk’ DNA

21.11.2003


The explosion of "junk" DNA in animals, plants and fungi may be the simple result of their ancestors’ reduced population sizes, according to a new hypothesis proposed by Indiana University Bloomington and University of Oregon scientists in the Nov. 21 issue of Science.



The hypothesis explains a mysterious genetic difference between bacteria and eukaryotes, a giant group of organisms that includes animals, plants, fungi, algae and other protists. Bacteria tend to have extremely lean genomes; their genes barely fit into them, without much genetic material left over. Eukaryotic genomes are a complex mixture of useful genes and useless ("junk") DNA jammed haphazardly between genes and even within them.

"The evolution of genomic complexity is inevitable," said IUB biologist Michael Lynch, who led the study. "It’s just that in bacteria, there is a pressure against it -- natural selection -- which works more efficiently when population sizes are big. Eukaryotes have much smaller population sizes compared to bacteria, and we believe this is the main reason junk DNA sequences are still with us."


Junk DNA dominates eukaryotic chromosomes. The chromosomal space taken up by just 30 human genes and the DNA within and between those genes could easily accommodate whole bacterial genomes containing 3,000 or 4,000 genes, Lynch said. While some of what geneticists have called junk DNA is turning out to be not so junky after all, Lynch said a substantial fraction of such genetic material probably deserves the name.

Genetic mutations occur in all organisms. But since large-scale mutations -- such as the random insertion of large DNA sequences within or between genes -- are almost always bad for an organism, Lynch and University of Oregon computer scientist John Conery suggest the only way junk DNA can survive the streamlining force of natural selection is if natural selection’s potency is weakened.

When populations get small, Lynch explained, natural selection becomes less efficient, which makes it possible for extraneous genetic sequences to creep into populations by mutation and stay there. In larger populations, disadvantageous mutations vanish quickly.

Most experts believe that the first eukaryotes, which were probably single-celled, appeared on Earth about 2.5 billion years ago. Multicellular eukaryotes are generally believed to have evolved about 700 million years ago. If Lynch’s and Conery’s explanation of why bacterial and eukaryotic genomes are so different is true, it provides new insights into the genomic characteristics of Earth’s first single-celled and multicellular eukaryotes.

A general rule in nature is that the bigger the species, the less populous it is. With a few exceptions, eukaryotic cells are so big that they make most bacteria look like barnacles on the side of a dinghy. If the first eukaryotes were larger than their bacterial ancestors, as Lynch believes, then their population sizes probably went down. This decrease in eukaryote population sizes is why a burgeoning of large-scale mutations survived natural selection in the first single-celled and multicellular eukaryotes, according to Lynch and Conery.

To estimate long-term population sizes of 50 or so species for which extensive genomic data was available, Lynch and Conery examined "silent-site" mutations. Silent-site mutations are single nucleotide changes within genes that don’t affect the gene product, which is a protein. Because of their unique characteristics, silent-site mutations can’t be significantly influenced by natural selection. The researchers were able to calculate rough estimates of the species’ long-term population sizes by assessing variation in the species’ silent-site nucleotides.

Of the original group of sampled organisms, Lynch and Conery selected a subset of about 30 and calculated, for each organism, the number of genes per total genome size as well as the longevity of gene duplications per total genome size. They also calculated the approximate amount of each organism’s genome taken up by DNA sequences that do not contain genes.

The researchers found that a consistent pattern emerged when genomic characteristics of bacteria and various eukaryotes were plotted against the species’ total genome sizes. Bigger species, such as salmon, humans and mice, tended to have small, long-term population sizes, more genes, more junk DNA and longer-lived gene duplications. Almost without exception, the species found to have large, long-term population sizes, fewer genes, less junk DNA and shorter-lived gene duplications were bacteria.

The data suggest it is genetic drift (an evolutionary force whose main component is randomness), not natural selection, that preserves junk DNA and other extraneous genetic sequences in organisms. When population sizes are large, drift is usually overpowered by natural selection, but when population sizes are small, drift may actually supersede natural selection as the dominant evolutionary force, making it possible for weakly disadvantageous DNA sequences to accumulate.

"As more organisms’ genomes are sequenced, we will continue to look at whether our model is upheld," Lynch said.


Lynch’s and Conery’s ongoing research on the origins of genomic complexity receives funding from the National Science Foundation and the National Institutes of Health.

To speak with Lynch, contact David Bricker at 812-856-9035 or brickerd@indiana.edu.

"The Origins of Genome Complexity," Science, Vol. 302, no. 5649

David Bricker | EurekAlert!
Further information:
http://newsinfo.iu.edu/

More articles from Life Sciences:

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

nachricht X-ray experiments reveal two different types of water
27.06.2017 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

NASA sees quick development of Hurricane Dora

27.06.2017 | Earth Sciences

New method to rapidly map the 'social networks' of proteins

27.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>