Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T team makes ’movie stars’ of atoms

21.11.2003


Chemists at the University of Toronto have captured atom-scale images of the melting process-revealing the first images of the transition of a solid into a liquid at the timescale of femtoseconds, or millionths of a billionth of a second.

The result is an unprecedented "movie" detailing the melting process as solid aluminum becomes a liquid. This new study, led by Professor R. J. Dwayne Miller of the Departments of Chemistry and Physics, received the prestigious cover position of the Nov. 21 issue of Science.

"Imagine being able to see atoms as they move in real time," says Miller, who holds the Canada Research Chair in Femtoscience. "Chemistry and biology are fundamentally governed by changes in atomic structure. We now have a tool that will let us observe the most fundamental processes at the atomic level of inspection with sufficient time resolution to allow us to see chemical and biological events as they happen."



Since no camera shutter can open and close at the femtosecond time scale, the team built a special system using a laser and an electron gun inside a vacuum chamber. The energy of the laser’s blast superheated small sections of the aluminum to over 1,000 degrees Celsius, exceeding the metal’s melting point of 660 degrees Celsius.

Releasing a 600-femtosecond electron pulse at virtually the same moment of the laser blast, they captured an image of the aluminum atoms. This revealed the melting process at 0.5-picoseconds (one thousandth of a billionth of a second) after the laser struck the aluminum. However, capturing the complete melting sequence required that they repeat the process several times, each time firing the electron pulse a few hundred femtoseconds later. This revealed the melting process at 1.5-, 2.5- and 3.5-picoseconds after the laser pulse.

The "movie" the group saw when they put the frames together revealed that the solid literally shook itself apart at the atomic level. Liquids are fundamentally different than solids in that the atomic positions are random in liquids but ordered in solids. The team was able to watch, step by step, as the initially well-ordered arrangement of aluminum atoms in the solid changed into the disordered state of the liquid. The aluminum melted in an astonishingly short time-within 3.5 picoseconds.

This work represents the first atomic level view of the melting process, one of the simplest structural changes of matter. The team stresses the scientific implications of being able to watch atoms rearrange themselves on the femtosecond timescale. "Chemists think of reactions in terms of atoms moving around as bonds are broken and formed," says Jason Dwyer, a graduate student in Miller’s laboratory and a co-author of the paper. "It is one of the dreams of chemistry to be able to actually watch that as it happens, and we now have a technique that lets us do that."


The research is funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, the Natural Sciences Engineering Research Council of Canada and the U of T Connaught Fund.

CONTACT:

R.J. Dwayne Miller
Department of Chemistry
(currently in Germany)
011-49-30-897-48221 2-6pm EST
011-49-30-6392-1429 7am-12pm
dmiller@Lphys.chem.utoronto.ca

Brad Siwick
Department of Physics
416-978-0366
siwick@Lphys.chem.utoronto.ca

Jason Dwyer
Department of Chemistry
416-978-0366
jdwyer@Lphys.chem.utoronto.ca

Robert Jordan
Department of Chemistry
416-978-0366
robert@Lphys.chem.utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Multifunctional Platform for the Delivery of Gene Therapeutics
22.01.2018 | Angewandte Chemie International Edition

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks