Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T team makes ’movie stars’ of atoms

21.11.2003


Chemists at the University of Toronto have captured atom-scale images of the melting process-revealing the first images of the transition of a solid into a liquid at the timescale of femtoseconds, or millionths of a billionth of a second.

The result is an unprecedented "movie" detailing the melting process as solid aluminum becomes a liquid. This new study, led by Professor R. J. Dwayne Miller of the Departments of Chemistry and Physics, received the prestigious cover position of the Nov. 21 issue of Science.

"Imagine being able to see atoms as they move in real time," says Miller, who holds the Canada Research Chair in Femtoscience. "Chemistry and biology are fundamentally governed by changes in atomic structure. We now have a tool that will let us observe the most fundamental processes at the atomic level of inspection with sufficient time resolution to allow us to see chemical and biological events as they happen."



Since no camera shutter can open and close at the femtosecond time scale, the team built a special system using a laser and an electron gun inside a vacuum chamber. The energy of the laser’s blast superheated small sections of the aluminum to over 1,000 degrees Celsius, exceeding the metal’s melting point of 660 degrees Celsius.

Releasing a 600-femtosecond electron pulse at virtually the same moment of the laser blast, they captured an image of the aluminum atoms. This revealed the melting process at 0.5-picoseconds (one thousandth of a billionth of a second) after the laser struck the aluminum. However, capturing the complete melting sequence required that they repeat the process several times, each time firing the electron pulse a few hundred femtoseconds later. This revealed the melting process at 1.5-, 2.5- and 3.5-picoseconds after the laser pulse.

The "movie" the group saw when they put the frames together revealed that the solid literally shook itself apart at the atomic level. Liquids are fundamentally different than solids in that the atomic positions are random in liquids but ordered in solids. The team was able to watch, step by step, as the initially well-ordered arrangement of aluminum atoms in the solid changed into the disordered state of the liquid. The aluminum melted in an astonishingly short time-within 3.5 picoseconds.

This work represents the first atomic level view of the melting process, one of the simplest structural changes of matter. The team stresses the scientific implications of being able to watch atoms rearrange themselves on the femtosecond timescale. "Chemists think of reactions in terms of atoms moving around as bonds are broken and formed," says Jason Dwyer, a graduate student in Miller’s laboratory and a co-author of the paper. "It is one of the dreams of chemistry to be able to actually watch that as it happens, and we now have a technique that lets us do that."


The research is funded by the Canada Foundation for Innovation, the Ontario Innovation Trust, the Natural Sciences Engineering Research Council of Canada and the U of T Connaught Fund.

CONTACT:

R.J. Dwayne Miller
Department of Chemistry
(currently in Germany)
011-49-30-897-48221 2-6pm EST
011-49-30-6392-1429 7am-12pm
dmiller@Lphys.chem.utoronto.ca

Brad Siwick
Department of Physics
416-978-0366
siwick@Lphys.chem.utoronto.ca

Jason Dwyer
Department of Chemistry
416-978-0366
jdwyer@Lphys.chem.utoronto.ca

Robert Jordan
Department of Chemistry
416-978-0366
robert@Lphys.chem.utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>