Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein involved in cell division now found key to cell growth

21.11.2003


A research team at The University of Texas M. D. Anderson Cancer Center has found that a single protein known as ARF helps coordinate both growth and division within a cell -- the functions that are often perturbed in cancer development.



Many proteins have been found in cancer research that are associated with either errant cell division or with uncontrolled growth, but ARF is the first "master molecule" that seems to be involved in both crucial aspects of the cell cycle, say the researchers, who published their discovery in the November issue of the journal, Molecular Cell.

The work helps explain why so many human cancers -- more than 40 percent -- are found to have altered ARF proteins, says the study’s lead author, Yanping Zhang, Ph.D., assistant professor in the Department of Molecular and Cellular Oncology.


The picture of molecular cell processes now painted by the investigators also suggests that drugs might be developed that could mimic normal ARF function, he says.

"In cancer, cells need to grow first, and then divide, and we have found the first protein that can, in a coordinated fashion, put the brakes on both of these steps," says Zhang. "This protein, or those associated with it, might offer some new therapeutic strategies to investigate."

ARF and the proteins it has power over are major players in cancer development, say the investigators. ARF is the second most frequently altered protein in cancer development, and it helps manage the tumor suppressor protein p53, which is the most common protein defect associated with cancer. That was already known. Now, this study shows that ARF also controls a protein known as B23, which is found in abnormally high levels in almost every tumor cell -- but, before this work, no one knew both proteins interacted.

In order for a cell to grow, it must produce new proteins. To do that, small round bodies within the cell known as ribosomes develop, based on instructions from the cell’s DNA genetic code, which then guide production of proteins. Putting together ribosome "protein factories" from RNA (decoded DNA) and other molecules is one of the major activities of a cell; without ribosomes, protein production would shut down.

Ribosomes are made up of RNA (decoded DNA) and proteins, and Zhang and colleagues found that ARF can help limit the production of ribosomes, and hinder growth. It does this by "degrading" or inhibiting the B23 protein, which helps trigger mature formation of the ribosome factory. Without B23, ribosomes cannot form, proteins aren’t produced, and a cell cannot grow, says Zhang. Normal cells do need some amount of B23, but cells that are constantly growing, as cancer cells do, contain high levels of B23, he says.

At this point, researchers do not know whether high levels of B23 imply that ARF proteins are mutated, unable to limit production of ribosomes, or if there is just too little ARF protein to degrade high levels of B23 protein.

"B23 has been found to be highly over-expressed in many tumors, such as in breast and ovarian cancers, but no one knows why that is or how to control it," says Zhang. "Now we at least know that ARF can control B23, and it may mean a drug that mimics ARF could help inhibit the protein and help control cell growth."

Cells that grow often divide, and ARF has a known function in regulating that aspect of the cell cycle, says Zhang. ARF works in conjunction with the p53 protein, a tumor suppressor that blocks the cell cycle if the cell starts to grow erratically. Abnormally high levels of molecules that signal this kind of growth activates ARF, which in turn allows p53 to accumulate in the cell to halt that growth.

"The importance of ARF is that it can control the two related activities, growth and division, that are key to cancer development," says Zhang. "ARF can inhibit the cell cycle by activating p53 and can also inhibit cell growth by inhibiting B23."


The study is funded by the National Institutes of Health and by M. D. Anderson Cancer Center. Zhang’s co-authors include, from M. D. Anderson’s Department of Molecular and Cellular Pathology: Koji Itahana, Ph.D.; Krishna Bhat, Ph.D.; Aiwen Jin, Yoko Itahana; and from the Department of Molecular Pathology: David Hawke; and Ryuji Kobayashi, Ph.D.

Heather Russell | EurekAlert!

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>