Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein involved in cell division now found key to cell growth

21.11.2003


A research team at The University of Texas M. D. Anderson Cancer Center has found that a single protein known as ARF helps coordinate both growth and division within a cell -- the functions that are often perturbed in cancer development.



Many proteins have been found in cancer research that are associated with either errant cell division or with uncontrolled growth, but ARF is the first "master molecule" that seems to be involved in both crucial aspects of the cell cycle, say the researchers, who published their discovery in the November issue of the journal, Molecular Cell.

The work helps explain why so many human cancers -- more than 40 percent -- are found to have altered ARF proteins, says the study’s lead author, Yanping Zhang, Ph.D., assistant professor in the Department of Molecular and Cellular Oncology.


The picture of molecular cell processes now painted by the investigators also suggests that drugs might be developed that could mimic normal ARF function, he says.

"In cancer, cells need to grow first, and then divide, and we have found the first protein that can, in a coordinated fashion, put the brakes on both of these steps," says Zhang. "This protein, or those associated with it, might offer some new therapeutic strategies to investigate."

ARF and the proteins it has power over are major players in cancer development, say the investigators. ARF is the second most frequently altered protein in cancer development, and it helps manage the tumor suppressor protein p53, which is the most common protein defect associated with cancer. That was already known. Now, this study shows that ARF also controls a protein known as B23, which is found in abnormally high levels in almost every tumor cell -- but, before this work, no one knew both proteins interacted.

In order for a cell to grow, it must produce new proteins. To do that, small round bodies within the cell known as ribosomes develop, based on instructions from the cell’s DNA genetic code, which then guide production of proteins. Putting together ribosome "protein factories" from RNA (decoded DNA) and other molecules is one of the major activities of a cell; without ribosomes, protein production would shut down.

Ribosomes are made up of RNA (decoded DNA) and proteins, and Zhang and colleagues found that ARF can help limit the production of ribosomes, and hinder growth. It does this by "degrading" or inhibiting the B23 protein, which helps trigger mature formation of the ribosome factory. Without B23, ribosomes cannot form, proteins aren’t produced, and a cell cannot grow, says Zhang. Normal cells do need some amount of B23, but cells that are constantly growing, as cancer cells do, contain high levels of B23, he says.

At this point, researchers do not know whether high levels of B23 imply that ARF proteins are mutated, unable to limit production of ribosomes, or if there is just too little ARF protein to degrade high levels of B23 protein.

"B23 has been found to be highly over-expressed in many tumors, such as in breast and ovarian cancers, but no one knows why that is or how to control it," says Zhang. "Now we at least know that ARF can control B23, and it may mean a drug that mimics ARF could help inhibit the protein and help control cell growth."

Cells that grow often divide, and ARF has a known function in regulating that aspect of the cell cycle, says Zhang. ARF works in conjunction with the p53 protein, a tumor suppressor that blocks the cell cycle if the cell starts to grow erratically. Abnormally high levels of molecules that signal this kind of growth activates ARF, which in turn allows p53 to accumulate in the cell to halt that growth.

"The importance of ARF is that it can control the two related activities, growth and division, that are key to cancer development," says Zhang. "ARF can inhibit the cell cycle by activating p53 and can also inhibit cell growth by inhibiting B23."


The study is funded by the National Institutes of Health and by M. D. Anderson Cancer Center. Zhang’s co-authors include, from M. D. Anderson’s Department of Molecular and Cellular Pathology: Koji Itahana, Ph.D.; Krishna Bhat, Ph.D.; Aiwen Jin, Yoko Itahana; and from the Department of Molecular Pathology: David Hawke; and Ryuji Kobayashi, Ph.D.

Heather Russell | EurekAlert!

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>