Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Emory scientists find marker for long-term immunity


Scientists at the Emory Vaccine Center and The Scripps Research Institute have found a way to identify which of the T cells generated after a viral infection can persist and confer protective immunity. Because these long-lived cells protect against reinfection by "remembering" the prior pathogen, they are called memory T cells. This discovery about the specific mechanisms of long-term immunity could help scientists develop more effective vaccines against challenging infections.

The research, by Susan M. Kaech, PhD, a postdoctoral fellow in microbiology and immunology at Emory University School of Medicine, and principal investigator Rafi Ahmed, PhD, director of the Emory Vaccine Center and a Georgia Research Eminent Scholar, was published online November 16 and will be printed in the December issue of Nature Immunology. Other members of the research team were E. John Wherry and Bogumila T. Konieczny of Emory University School of Medicine, and Joyce T. Tan and Charles D. Surh of The Scripps Research Institute.

During an acute viral infection, CD4 and CD8 T cells activated by specific viral antigens dramatically expand in number and become effector T cells. These cells kill the virus-infected cells and also produce cytokines. Most effector cells die within a few weeks, after their initial job is complete. Only about 5 to 10 percent survive to become long-term memory cells, which are capable of mounting a strong and rapid immune response when they come into contact with the original virus, even years later. Scientists have not clearly understood the mechanisms of memory cell production, and a major unanswered question has been how to distinguish the small fraction of cells likely to survive in long-term memory.

This team of investigators found that expression of the interleukin 7 (IL-7) receptor, which binds the cytokine IL-7 and is required for T cell survival, is increased in a small subset of CD8 T cells generated during an acute infection, and that expression of this receptor marks those that will survive to become long-lived memory CD8 T cells.

In experiments with mice, the Emory scientists found that at the peak of the CD8 T cell immune response during an acute viral infection a small subset of effector cells had a higher expression of the IL-7 receptor, and they hypothesized that these cells would be the ones to survive as memory cells. They transferred a group of cells with and without this distinguishing characteristic into mice that were unexposed to virus, and found that in fact the cells expressing IL-7 receptor survived and differentiated into long-lived memory cells. They also found that IL-7 signals were necessary for the survival of these cells.

"We can consider the IL-7 receptor a marker of ’cellular fitness’ for long-term survival and functionality," says Dr. Kaech. "This new knowledge should help us in assessing and predicting the number and quality of memory T cells that will be generated after infection or immunization. It also could lead to the identification of additional markers of memory cells and provide a more comprehensive picture of memory cell development."

"As scientists struggle to create long-term, effective vaccines for difficult diseases, they need a detailed understanding of the mechanisms of long-term memory," says Dr. Ahmed. "Understanding immune memory is the necessary basis for developing any type of effective vaccine. In addition, these findings could help in designing immunotherapies to control chronic viral infections and cancer."

Holly Korschun | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>